Synergic carcinostatic effects of ascorbic acid and hyperthermia on Ehrlich ascites tumor cell

In this study, we evaluated the carcinostatic effects of combined ascorbic acid (AsA) and a capacitive-resistive electric transfer (CRet) hyperthermic apparatus-induced hyperthermic treatment on Ehrlich ascites tumor (EAT) cells. EAT cells were exposed to various AsA (0-10 mM) concentrations for 1 h...

Full description

Saved in:
Bibliographic Details
Published inExperimental oncology Vol. 37; no. 2; p. 94
Main Authors Saitoh, Y, Yoshimoto, T, Kato, S, Miwa, N
Format Journal Article
LanguageEnglish
Published Ukraine 01.06.2015
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:In this study, we evaluated the carcinostatic effects of combined ascorbic acid (AsA) and a capacitive-resistive electric transfer (CRet) hyperthermic apparatus-induced hyperthermic treatment on Ehrlich ascites tumor (EAT) cells. EAT cells were exposed to various AsA (0-10 mM) concentrations for 1 h; they subsequently underwent CRet treatment for 15 min at 42 °C. Cell viability was assessed by the WST-8 assay 24 h after the combined treatment. Reactive oxygen species involvement was evaluated using catalase and tempol; caspase-3/7 activation was determined by their fluorescent substrates; cell proliferation were estimated by time-lapse observation. The effect on the cell cycle was analyzed by flow cytometry. Combined AsA and CRet treatment synergistically suppressed cell viability compared with either treatment alone, and these synergistically carcinostatic effects were evident even at noncytotoxic concentrations of AsA alone (≤ 2 mM). The carcinostatic effects of combined AsA and CRet treatment were attenuated in a dose-dependent manner by catalase addition, but not by the superoxide anion radical scavenger tempol. Time-lapse observation revealed that combined AsA and CRet treatment activated caspase-3/7 at 10-24 h after treatment, accompanied by significant cell growth suppression. Cell cycle analysis revealed that the rate of sub-G1-phase (apoptotic) cells was drastically increased at 12 h and 24 h, and that the G2/M-phase cells gradually increased at 6-24 h after treatment. These results indicate that combined AsA and CRet treatment synergistically inhibits EAT cell growth through G2/M arrest and apoptosis induction via H2O2 generation at lower AsA concentrations; this carcinostatic effect cannot be exerted by AsA alone.
ISSN:1812-9269
DOI:10.31768/2312-8852.2015.37(2):94-99