Modulating auditory selective attention by non‐invasive brain stimulation: Differential effects of transcutaneous vagal nerve stimulation and transcranial random noise stimulation
Selective attention is a basic process required to maintain goal‐directed behavior by appropriately responding to target stimuli and suppressing reactions to non‐target stimuli. It has been proposed that auditory selective attention is linked to the activity of the locus coeruleus‐norepinergic (LC‐N...
Saved in:
Published in | The European journal of neuroscience Vol. 48; no. 6; pp. 2301 - 2309 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
France
Wiley Subscription Services, Inc
01.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Selective attention is a basic process required to maintain goal‐directed behavior by appropriately responding to target stimuli and suppressing reactions to non‐target stimuli. It has been proposed that auditory selective attention is linked to the activity of the locus coeruleus‐norepinergic (LC‐NE) system and a large‐scale fronto‐parietal cortical network, but there is still sparse causal evidence for these assumptions. By applying transcutaneous vagal nerve stimulation (tVNS) and transcranial random noise stimulation (tRNS) over the frontal cortex, we systematically assessed the involvement of these subcortical and cortical components in the regulation of auditory selective attention. Using a single‐blinded, sham‐controlled, within‐subject design we analyzed online effects of tVNS and tRNS in 20 healthy participants during an auditory oddball paradigm. We show significant stimulation‐dependent modulations of auditory selective attention on the behavioral and electrophysiological level. Compared to sham, tVNS increased the P3 amplitude, while tRNS reduced the reaction time to target stimuli. Moreover, both techniques reduced the P3 latency. Our data provide evidence for the functional relevance of the subcortical NE system in the regulation of neural resources that allows a phasic response to incoming target stimuli. They indicate that frontal cortex structures are crucially involved in the successful evaluation of the respective information. Moreover, our results are in favor of the LC‐P3 hypothesis claiming the vital role of the NE system in auditory selective attention and in the generation of the P3. Of note, the effects of tVNS on auditory selective attention are comparable with those evoked by pharmacological interventions and invasive vagal nerve stimulation.
By applying transcutaneous vagal nerve stimulation (tVNS) and transcranial random noise stimulation (tRNS) over the frontal cortex, we assessed the involvement of the locus coeruleus‐norepinergic (LC‐NE) system and the fronto‐parietal cortical network on the auditory P3. Compared to sham, tVNS increased the P3 amplitude while tRNS reduced the reaction time to target stimuli. Moreover, both techniques reduced the P3 latency. Our results are in favor of the LC‐P3 hypothesis claiming the vital role of the NE system in auditory selective attention and in the generation of the P3. |
---|---|
AbstractList | Selective attention is a basic process required to maintain goal‐directed behavior by appropriately responding to target stimuli and suppressing reactions to non‐target stimuli. It has been proposed that auditory selective attention is linked to the activity of the locus coeruleus‐norepinergic (LC‐NE) system and a large‐scale fronto‐parietal cortical network, but there is still sparse causal evidence for these assumptions. By applying transcutaneous vagal nerve stimulation (tVNS) and transcranial random noise stimulation (tRNS) over the frontal cortex, we systematically assessed the involvement of these subcortical and cortical components in the regulation of auditory selective attention. Using a single‐blinded, sham‐controlled, within‐subject design we analyzed online effects of tVNS and tRNS in 20 healthy participants during an auditory oddball paradigm. We show significant stimulation‐dependent modulations of auditory selective attention on the behavioral and electrophysiological level. Compared to sham, tVNS increased the P3 amplitude, while tRNS reduced the reaction time to target stimuli. Moreover, both techniques reduced the P3 latency. Our data provide evidence for the functional relevance of the subcortical NE system in the regulation of neural resources that allows a phasic response to incoming target stimuli. They indicate that frontal cortex structures are crucially involved in the successful evaluation of the respective information. Moreover, our results are in favor of the LC‐P3 hypothesis claiming the vital role of the NE system in auditory selective attention and in the generation of the P3. Of note, the effects of tVNS on auditory selective attention are comparable with those evoked by pharmacological interventions and invasive vagal nerve stimulation. Selective attention is a basic process required to maintain goal-directed behavior by appropriately responding to target stimuli and suppressing reactions to non-target stimuli. It has been proposed that auditory selective attention is linked to the activity of the locus coeruleus-norepinergic (LC-NE) system and a large-scale fronto-parietal cortical network, but there is still sparse causal evidence for these assumptions. By applying transcutaneous vagal nerve stimulation (tVNS) and transcranial random noise stimulation (tRNS) over the frontal cortex, we systematically assessed the involvement of these subcortical and cortical components in the regulation of auditory selective attention. Using a single-blinded, sham-controlled, within-subject design we analyzed online effects of tVNS and tRNS in 20 healthy participants during an auditory oddball paradigm. We show significant stimulation-dependent modulations of auditory selective attention on the behavioral and electrophysiological level. Compared to sham, tVNS increased the P3 amplitude, while tRNS reduced the reaction time to target stimuli. Moreover, both techniques reduced the P3 latency. Our data provide evidence for the functional relevance of the subcortical NE system in the regulation of neural resources that allows a phasic response to incoming target stimuli. They indicate that frontal cortex structures are crucially involved in the successful evaluation of the respective information. Moreover, our results are in favor of the LC-P3 hypothesis claiming the vital role of the NE system in auditory selective attention and in the generation of the P3. Of note, the effects of tVNS on auditory selective attention are comparable with those evoked by pharmacological interventions and invasive vagal nerve stimulation.Selective attention is a basic process required to maintain goal-directed behavior by appropriately responding to target stimuli and suppressing reactions to non-target stimuli. It has been proposed that auditory selective attention is linked to the activity of the locus coeruleus-norepinergic (LC-NE) system and a large-scale fronto-parietal cortical network, but there is still sparse causal evidence for these assumptions. By applying transcutaneous vagal nerve stimulation (tVNS) and transcranial random noise stimulation (tRNS) over the frontal cortex, we systematically assessed the involvement of these subcortical and cortical components in the regulation of auditory selective attention. Using a single-blinded, sham-controlled, within-subject design we analyzed online effects of tVNS and tRNS in 20 healthy participants during an auditory oddball paradigm. We show significant stimulation-dependent modulations of auditory selective attention on the behavioral and electrophysiological level. Compared to sham, tVNS increased the P3 amplitude, while tRNS reduced the reaction time to target stimuli. Moreover, both techniques reduced the P3 latency. Our data provide evidence for the functional relevance of the subcortical NE system in the regulation of neural resources that allows a phasic response to incoming target stimuli. They indicate that frontal cortex structures are crucially involved in the successful evaluation of the respective information. Moreover, our results are in favor of the LC-P3 hypothesis claiming the vital role of the NE system in auditory selective attention and in the generation of the P3. Of note, the effects of tVNS on auditory selective attention are comparable with those evoked by pharmacological interventions and invasive vagal nerve stimulation. Selective attention is a basic process required to maintain goal‐directed behavior by appropriately responding to target stimuli and suppressing reactions to non‐target stimuli. It has been proposed that auditory selective attention is linked to the activity of the locus coeruleus‐norepinergic (LC‐NE) system and a large‐scale fronto‐parietal cortical network, but there is still sparse causal evidence for these assumptions. By applying transcutaneous vagal nerve stimulation (tVNS) and transcranial random noise stimulation (tRNS) over the frontal cortex, we systematically assessed the involvement of these subcortical and cortical components in the regulation of auditory selective attention. Using a single‐blinded, sham‐controlled, within‐subject design we analyzed online effects of tVNS and tRNS in 20 healthy participants during an auditory oddball paradigm. We show significant stimulation‐dependent modulations of auditory selective attention on the behavioral and electrophysiological level. Compared to sham, tVNS increased the P3 amplitude, while tRNS reduced the reaction time to target stimuli. Moreover, both techniques reduced the P3 latency. Our data provide evidence for the functional relevance of the subcortical NE system in the regulation of neural resources that allows a phasic response to incoming target stimuli. They indicate that frontal cortex structures are crucially involved in the successful evaluation of the respective information. Moreover, our results are in favor of the LC‐P3 hypothesis claiming the vital role of the NE system in auditory selective attention and in the generation of the P3. Of note, the effects of tVNS on auditory selective attention are comparable with those evoked by pharmacological interventions and invasive vagal nerve stimulation. By applying transcutaneous vagal nerve stimulation (tVNS) and transcranial random noise stimulation (tRNS) over the frontal cortex, we assessed the involvement of the locus coeruleus‐norepinergic (LC‐NE) system and the fronto‐parietal cortical network on the auditory P3. Compared to sham, tVNS increased the P3 amplitude while tRNS reduced the reaction time to target stimuli. Moreover, both techniques reduced the P3 latency. Our results are in favor of the LC‐P3 hypothesis claiming the vital role of the NE system in auditory selective attention and in the generation of the P3. |
Author | Geyer, Ulrike Janitzky, Kathrin Rufener, Katharina S. Zaehle, Tino Heinze, Hans‐Jochen |
Author_xml | – sequence: 1 givenname: Katharina S. orcidid: 0000-0002-9994-1171 surname: Rufener fullname: Rufener, Katharina S. organization: Center for Behavioral Brain Sciences – sequence: 2 givenname: Ulrike surname: Geyer fullname: Geyer, Ulrike organization: Otto‐von‐Guericke University – sequence: 3 givenname: Kathrin surname: Janitzky fullname: Janitzky, Kathrin organization: Krankenhaus St. Elisabeth – sequence: 4 givenname: Hans‐Jochen surname: Heinze fullname: Heinze, Hans‐Jochen organization: Center for Behavioral Brain Sciences – sequence: 5 givenname: Tino surname: Zaehle fullname: Zaehle, Tino email: tino.zaehle@ovgu.de organization: Center for Behavioral Brain Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30144194$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9uFSEUxompsbfVhS9gSNzYxbQwzDDgrqn1X6puNHFHGGAabmagAnPN3fkIfRlfyCfx3D8abaIsgOT8znfg-47QQYjBIfSYklMK68wtwyltaC3uoQVtOKlky8UBWhDZskpQ_vkQHeW8JIQI3rQP0CEjtGmobBbo-7to51EXH66xnq0vMa1xdqMzxa8c1qW4UHwMuF9jmPrj260PK503tT5pH3AuftoKxPAcv_DD4NKmQ4_Ywd2UjOOAS9Ihm7no4OKc8UpfQz24BCp_9GMd7B6FbSMBh40TDPb5L_Ihuj_oMbtH-_MYfXp5-fHidXX14dWbi_OryrCWiUraehCDpR2VlNWybgntKW2sHrjmvdbCEM5Mx62zYF7Tmbo33AgNiJRgETtGz3a6Nyl-mV0uavLZuHHcfUTVRDImO9oJQJ_eQZdxTgFep2rGaAeg6IB6sqfmfnJW3SQ_6bRWvwIB4GQHmBRzTm74jVCiNmErCFttwwb27A5rfNn6Ayb68X8dX_3o1v-WVpdv3-86fgL5osCk |
CitedBy_id | crossref_primary_10_1016_j_neurom_2021_11_009 crossref_primary_10_1038_s41598_024_68015_4 crossref_primary_10_1016_j_neubiorev_2023_105221 crossref_primary_10_3390_brainsci10080531 crossref_primary_10_1016_j_clinph_2021_11_079 crossref_primary_10_12677_AP_2023_131023 crossref_primary_10_1016_j_autneu_2021_102901 crossref_primary_10_1097_HRP_0000000000000301 crossref_primary_10_1111_psyp_13571 crossref_primary_10_3389_fnagi_2023_1145207 crossref_primary_10_1186_s12883_023_03320_5 crossref_primary_10_1016_j_biopsycho_2023_108646 crossref_primary_10_1016_j_brs_2022_09_009 crossref_primary_10_1016_j_neubiorev_2022_104702 crossref_primary_10_3389_fnhum_2021_699473 crossref_primary_10_1016_j_jneuroling_2021_100990 crossref_primary_10_1111_ner_13346 crossref_primary_10_1093_ijnp_pyz072 crossref_primary_10_1523_ENEURO_0248_21_2021 crossref_primary_10_1007_s13534_024_00361_8 crossref_primary_10_1044_2023_JSLHR_22_00596 crossref_primary_10_3389_fnins_2023_1096865 crossref_primary_10_1016_j_brs_2022_06_006 crossref_primary_10_1016_j_brs_2023_06_006 crossref_primary_10_3389_fnhum_2025_1539416 crossref_primary_10_1016_j_psyneuen_2022_105719 crossref_primary_10_3389_fneur_2020_00371 crossref_primary_10_3389_fnins_2022_922424 crossref_primary_10_3389_fpsyg_2020_01276 crossref_primary_10_3389_flang_2024_1403080 crossref_primary_10_1007_s11571_025_10220_6 crossref_primary_10_31083_j_jin2303059 crossref_primary_10_3389_fnins_2022_897303 crossref_primary_10_1111_ner_13313 crossref_primary_10_3390_brainsci14070690 crossref_primary_10_3389_fnhum_2020_568051 crossref_primary_10_3390_brainsci10060404 |
Cites_doi | 10.1162/jocn_a_00851 10.1016/j.psc.2013.01.006 10.1016/j.brainres.2017.03.021 10.1523/JNEUROSCI.2002-11.2011 10.1523/JNEUROSCI.09-01-00081.1989 10.1006/nimg.2001.0839 10.1017/S0048577201990559 10.1111/1469-8986.3820343 10.1016/S0167-8760(00)00142-2 10.1016/j.biopsych.2004.08.019 10.1097/00004691-199210000-00002 10.1016/j.clinph.2007.11.175 10.1016/j.biopsych.2008.04.037 10.1016/j.clinph.2012.09.006 10.3389/fncel.2017.00162 10.1523/JNEUROSCI.4248-08.2008 10.1155/2016/3616807 10.1146/annurev.neuro.28.061604.135709 10.1016/j.biopsych.2006.04.022 10.1037/0033-2909.131.4.510 10.1016/j.ijporl.2017.01.034 10.1016/j.clinph.2015.10.051 10.1016/0165-1781(89)90206-0 10.3758/BF03212388 10.3389/fnins.2017.00367 10.1016/j.brs.2011.11.004 10.1016/0301-0511(95)05130-9 10.1111/psyp.12544 10.1016/j.brainres.2010.05.016 10.1016/j.euroneuro.2015.03.015 10.1016/j.brs.2015.11.003 10.1016/j.conb.2004.03.012 10.1111/j.1469-8986.2010.01057.x 10.1038/mp.2011.185 10.1016/0168-5597(84)90016-9 10.1016/j.neurobiolaging.2015.02.023 10.3389/fpsyt.2013.00158 10.1016/j.clinph.2007.04.019 10.1016/S0028-3932(98)00141-9 10.1016/0167-8760(95)00028-Q 10.1126/science.2392679 10.1016/S0006-3223(99)00140-7 10.55782/ane-2008-1702 10.1111/1469-8986.3920147 10.3389/fpsyt.2012.00070 10.1007/s13311-014-0272-3 |
ContentType | Journal Article |
Copyright | 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd. Copyright © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd |
Copyright_xml | – notice: 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd – notice: 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd. – notice: Copyright © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 P64 7X8 |
DOI | 10.1111/ejn.14128 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Chemoreception Abstracts Engineering Research Database Technology Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Chemoreception Abstracts CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1460-9568 |
EndPage | 2309 |
ExternalDocumentID | 30144194 10_1111_ejn_14128 EJN14128 |
Genre | article Journal Article |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GAKWD GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 Q~Q R.K RIG RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHG WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WUP WXI WXSBR WYISQ XG1 YFH ZGI ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 P64 7X8 |
ID | FETCH-LOGICAL-c3538-9d2f8fd171913292501b114daf6a6baa8c063c76ded12847c2bc6c8a14d990143 |
IEDL.DBID | DR2 |
ISSN | 0953-816X 1460-9568 |
IngestDate | Fri Jul 11 07:49:19 EDT 2025 Sun Jul 13 04:46:34 EDT 2025 Mon Jul 21 06:06:00 EDT 2025 Tue Jul 01 03:02:18 EDT 2025 Thu Apr 24 23:01:31 EDT 2025 Wed Jan 22 16:38:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | tVNS auditory selective attention P300 tRNS |
Language | English |
License | 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3538-9d2f8fd171913292501b114daf6a6baa8c063c76ded12847c2bc6c8a14d990143 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9994-1171 |
PMID | 30144194 |
PQID | 2331793387 |
PQPubID | 34057 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2093397178 proquest_journals_2331793387 pubmed_primary_30144194 crossref_primary_10_1111_ejn_14128 crossref_citationtrail_10_1111_ejn_14128 wiley_primary_10_1111_ejn_14128_EJN14128 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2018 2018-09-00 20180901 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: September 2018 |
PublicationDecade | 2010 |
PublicationPlace | France |
PublicationPlace_xml | – name: France – name: Chichester |
PublicationTitle | The European journal of neuroscience |
PublicationTitleAlternate | Eur J Neurosci |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2002; 39 2015; 36 2015; 6 2010; 16 1990; 249 2013; 4 2005; 131 2017; 1664 2015; 52 1973; 14 1989; 9 1999; 46 2011; 31 2013; 124 2016; 2016 2012; 18 2016; 127 2005; 28 1989; 28 1995; 20 2006; 60 1995; 41 1992; 9 2017; 96 2015; 25 2007; 118 2013; 36 2012; 3 2015; 27 1984; 59 2004; 14 2017; 11 1999; 37 2004; 57 2008; 28 2008; 119 2008; 68 2001; 38 2001; 39 2011; 48 2008; 64 2012; 5 2001; 14 2016; 9 2014; 11 e_1_2_11_10_1 e_1_2_11_32_1 e_1_2_11_31_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_14_1 e_1_2_11_13_1 e_1_2_11_35_1 e_1_2_11_12_1 e_1_2_11_34_1 e_1_2_11_11_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_2_1 Wronka E. (e_1_2_11_48_1) 2008; 68 Leusden J. W. R. (e_1_2_11_24_1) 2015; 6 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_46_1 e_1_2_11_47_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_41_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_18_1 e_1_2_11_17_1 e_1_2_11_16_1 e_1_2_11_15_1 e_1_2_11_37_1 e_1_2_11_38_1 e_1_2_11_39_1 e_1_2_11_19_1 |
References_xml | – volume: 39 start-page: 213 year: 2001 end-page: 220 article-title: Topological distribution of oddball “P300” responses publication-title: International Journal of Psychophysiology – volume: 6 start-page: 102 year: 2015 article-title: Transcutaneous Vagal Nerve Stimulation (tVNS): A new neuromodulation tool in healthy humans? publication-title: Frontiers in Psychology – volume: 68 start-page: 362 year: 2008 end-page: 372 article-title: The auditory P3 from passive and active three‐stimulus oddball paradigm publication-title: Acta Neurobiologiae Experimentalis – volume: 64 start-page: 626 year: 2008 end-page: 635 article-title: Cognition‐enhancing doses of methylphenidate preferentially increase prefrontal cortex neuronal responsiveness publication-title: Biological Psychiatry – volume: 28 start-page: 255 year: 1989 end-page: 262 article-title: The effect of clonidine on auditory P300 publication-title: Psychiatry Research – volume: 9 start-page: 456 year: 1992 end-page: 479 article-title: The P300 wave of the human event‐related potential publication-title: Journal of Clinical Neurophysiology – volume: 3 start-page: 1 year: 2012 end-page: 7 article-title: Transcutaneous vagus nerve stimulation: Retrospective assessment of cardiac safety in a pilot study publication-title: Frontiers in Psychiatry – volume: 118 start-page: 2128 year: 2007 end-page: 2148 article-title: Updating P300: An integrative theory of P3a and P3b publication-title: Clinical Neurophysiology – volume: 9 start-page: 81 year: 1989 end-page: 93 article-title: Effects of locus coeruleus lesions on auditory, long‐latency, event‐related potentials in monkey publication-title: Journal of Neuroscience – volume: 60 start-page: 1111 year: 2006 end-page: 1120 article-title: Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function publication-title: Biological Psychiatry – volume: 59 start-page: 9 year: 1984 end-page: 20 article-title: Decreased response to novel stimuli after prefrontal lesions in man publication-title: Electroencephalography and Clinical Neurophysiology – volume: 37 start-page: 1 year: 1999 end-page: 9 article-title: Functional anatomy of intrinsic alertness: Evidence for a fronto‐parietal‐thalamic brainstem network in the right hemisphere publication-title: Neuropsychologia – volume: 96 start-page: 152 year: 2017 end-page: 155 article-title: Methylphenidate effects on P300 responses from children and adolescents publication-title: International Journal of Pediatric Otorhinolaryngology – volume: 2016 start-page: 1 year: 2016 end-page: 12 article-title: Transcranial alternating current and random noise stimulation: Possible mechanisms publication-title: Neural Plasticity – volume: 52 start-page: 1620 year: 2015 end-page: 1631 article-title: Noradrenergic and cholinergic modulation of late ERP responses to deviant stimuli publication-title: Psychophysiology – volume: 11 start-page: 367 year: 2017 article-title: Reduced prefrontal cortex activation in children with attention‐deficit/hyperactivity disorder during go/no‐go task: A functional near‐infrared spectroscopy study publication-title: Frontiers in Neuroscience – volume: 14 start-page: 265 year: 1973 end-page: 272 article-title: Vertex potentials evoked during auditory signal detection: Relation to decision criteria publication-title: Perception & Psychophysics – volume: 39 start-page: 147 year: 2002 end-page: 157 article-title: Alpha2‐noradrenergic effects on ERP and behavioral indices of auditory information processing publication-title: Psychophysiology – volume: 20 start-page: 59 year: 1995 end-page: 74 article-title: On the relationship between EEG and ERP variability publication-title: International Journal of Psychophysiology – volume: 127 start-page: 1351 year: 2016 end-page: 1357 article-title: An ERP source imaging study of the oddball task in children with attention deficit/hyperactivity disorder publication-title: Clinical Neurophysiology – volume: 9 start-page: 356 year: 2016 end-page: 363 article-title: Transcutaneous vagus nerve stimulation (tVNS) for treatment of drug‐resistant epilepsy: A randomized, double‐blind clinical trial (cMPsE02) publication-title: Brain Stimulation – volume: 131 start-page: 510 year: 2005 end-page: 532 article-title: Decision making, the P3, and the locus coeruleus–norepinephrine system publication-title: Psychological Bulletin – volume: 25 start-page: 773 year: 2015 end-page: 778 article-title: Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during action cascading processes publication-title: European Neuropsychopharmacology – volume: 119 start-page: 968 year: 2008 end-page: 970 article-title: P3b: Towards some decision about memory publication-title: Clinical Neurophysiology – volume: 31 start-page: 15416 year: 2011 end-page: 15423 article-title: Random noise stimulation improves neuroplasticity in perceptual learning publication-title: Journal of Neuroscience – volume: 124 start-page: 644 year: 2013 end-page: 657 article-title: Ten years on: A follow‐up review of ERP research in attention‐deficit/hyperactivity disorder publication-title: Clinical Neurophysiology – volume: 28 start-page: 403 year: 2005 end-page: 450 article-title: An integrative theory of locus coeruleus‐norepinephrine function: Adaptive gain and optimal performance publication-title: Annual Review of Neuroscience – volume: 57 start-page: 1377 year: 2004 end-page: 1384 article-title: Neurobiology of executive functions: Catecholamine influences on prefrontal cortical functions publication-title: Biological Psychiatry – volume: 11 start-page: 612 year: 2014 end-page: 622 article-title: The P3 event‐related potential is a biomarker for the efficacy of vagus nerve stimulation in patients with epilepsy publication-title: Neurotherapeutics: the Journal of the American Society for Experimental NeuroTherapeutics – volume: 27 start-page: 2126 year: 2015 end-page: 2132 article-title: Transcutaneous vagus nerve stimulation enhances post‐error slowing publication-title: Journal of Cognitive Neuroscience – volume: 14 start-page: 76 year: 2001 end-page: 84 article-title: On the functional neuroanatomy of intrinsic and phasic alertness publication-title: NeuroImage – volume: 46 start-page: 1309 year: 1999 end-page: 1320 article-title: Role of locus coeruleus in attention and behavioral flexibility publication-title: Biological Psychiatry – volume: 16 start-page: 173 year: 2010 end-page: 184 article-title: Role of frontal and parietal cortices in the control of bottom‐up and top‐down attention in humans publication-title: Brain Research – volume: 36 start-page: 169 year: 2013 end-page: 176 article-title: Cranial electrotherapy stimulation for treatment of anxiety, depression, and insomnia publication-title: Psychiatric Clinics of North America – volume: 5 start-page: 505 year: 2012 end-page: 511 article-title: Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities publication-title: Brain Stimulation – volume: 41 start-page: 103 year: 1995 end-page: 146 article-title: Cognitive and biological determinants of P300: An integrative review publication-title: Biological Psychology – volume: 38 start-page: 557 year: 2001 end-page: 577 article-title: On the utility of P3 amplitude as a measure of processing capacity publication-title: Psychophysiology – volume: 14 start-page: 212 year: 2004 end-page: 217 article-title: Parietal cortex and attention publication-title: Current Opinion in Neurobiology – volume: 249 start-page: 892 year: 1990 end-page: 895 article-title: A network model of catecholamine effects: Gain, signal‐to‐noise ratio, and behavior publication-title: Science – volume: 48 start-page: 162 year: 2011 end-page: 175 article-title: The anatomical and functional relationship between the P3 and autonomic components of the orienting response publication-title: Psychophysiology – volume: 28 start-page: 14147 year: 2008 end-page: 14155 article-title: Increasing human brain excitability by transcranial high‐frequency random noise stimulation publication-title: Journal of Neuroscience – volume: 11 start-page: 162 year: 2017 article-title: Transcranial random noise stimulation (tRNS) shapes the processing of rapidly changing auditory information publication-title: Frontiers in Cellular Neuroscience – volume: 18 start-page: 236 year: 2012 end-page: 244 article-title: Disorder‐specific functional abnormalities during sustained attention in youth with attention deficit hyperactivity disorder (ADHD) and with autism publication-title: Molecular Psychiatry – volume: 1664 start-page: 25 year: 2017 end-page: 36 article-title: Brain activity associated with selective attention, divided attention and distraction publication-title: Brain Research – volume: 4 start-page: 158 year: 2013 article-title: Head‐to‐head comparison of transcranial random noise stimulation, transcranial AC stimulation, and transcranial DC stimulation for tinnitus publication-title: Frontiers in Psychiatry – volume: 36 start-page: 1860 year: 2015 end-page: 1867 article-title: Neurobiology of aging publication-title: Neurobiology of Aging – volume: 38 start-page: 343 year: 2001 end-page: 358 article-title: Spatiotemporal analysis of the late ERP responses to deviant stimuli publication-title: Psychophysiology – ident: e_1_2_11_37_1 doi: 10.1162/jocn_a_00851 – ident: e_1_2_11_20_1 doi: 10.1016/j.psc.2013.01.006 – ident: e_1_2_11_35_1 doi: 10.1016/j.brainres.2017.03.021 – ident: e_1_2_11_14_1 doi: 10.1523/JNEUROSCI.2002-11.2011 – ident: e_1_2_11_31_1 doi: 10.1523/JNEUROSCI.09-01-00081.1989 – ident: e_1_2_11_43_1 doi: 10.1006/nimg.2001.0839 – ident: e_1_2_11_22_1 doi: 10.1017/S0048577201990559 – ident: e_1_2_11_39_1 doi: 10.1111/1469-8986.3820343 – ident: e_1_2_11_6_1 doi: 10.1016/S0167-8760(00)00142-2 – ident: e_1_2_11_3_1 doi: 10.1016/j.biopsych.2004.08.019 – ident: e_1_2_11_30_1 doi: 10.1097/00004691-199210000-00002 – ident: e_1_2_11_47_1 doi: 10.1016/j.clinph.2007.11.175 – ident: e_1_2_11_13_1 doi: 10.1016/j.biopsych.2008.04.037 – ident: e_1_2_11_18_1 doi: 10.1016/j.clinph.2012.09.006 – ident: e_1_2_11_34_1 doi: 10.3389/fncel.2017.00162 – ident: e_1_2_11_44_1 doi: 10.1523/JNEUROSCI.4248-08.2008 – ident: e_1_2_11_2_1 doi: 10.1155/2016/3616807 – ident: e_1_2_11_4_1 doi: 10.1146/annurev.neuro.28.061604.135709 – ident: e_1_2_11_9_1 doi: 10.1016/j.biopsych.2006.04.022 – ident: e_1_2_11_28_1 doi: 10.1037/0033-2909.131.4.510 – ident: e_1_2_11_36_1 doi: 10.1016/j.ijporl.2017.01.034 – ident: e_1_2_11_17_1 doi: 10.1016/j.clinph.2015.10.051 – ident: e_1_2_11_19_1 doi: 10.1016/0165-1781(89)90206-0 – ident: e_1_2_11_40_1 doi: 10.3758/BF03212388 – ident: e_1_2_11_26_1 doi: 10.3389/fnins.2017.00367 – ident: e_1_2_11_27_1 doi: 10.1016/j.brs.2011.11.004 – ident: e_1_2_11_33_1 doi: 10.1016/0301-0511(95)05130-9 – ident: e_1_2_11_10_1 doi: 10.1111/psyp.12544 – ident: e_1_2_11_25_1 doi: 10.1016/j.brainres.2010.05.016 – ident: e_1_2_11_41_1 doi: 10.1016/j.euroneuro.2015.03.015 – ident: e_1_2_11_7_1 doi: 10.1016/j.brs.2015.11.003 – ident: e_1_2_11_8_1 doi: 10.1016/j.conb.2004.03.012 – ident: e_1_2_11_29_1 doi: 10.1111/j.1469-8986.2010.01057.x – ident: e_1_2_11_11_1 doi: 10.1038/mp.2011.185 – ident: e_1_2_11_21_1 doi: 10.1016/0168-5597(84)90016-9 – ident: e_1_2_11_16_1 doi: 10.1016/j.neurobiolaging.2015.02.023 – volume: 6 start-page: 102 year: 2015 ident: e_1_2_11_24_1 article-title: Transcutaneous Vagal Nerve Stimulation (tVNS): A new neuromodulation tool in healthy humans? publication-title: Frontiers in Psychology – ident: e_1_2_11_46_1 doi: 10.3389/fpsyt.2013.00158 – ident: e_1_2_11_32_1 doi: 10.1016/j.clinph.2007.04.019 – ident: e_1_2_11_42_1 doi: 10.1016/S0028-3932(98)00141-9 – ident: e_1_2_11_15_1 doi: 10.1016/0167-8760(95)00028-Q – ident: e_1_2_11_38_1 doi: 10.1126/science.2392679 – ident: e_1_2_11_5_1 doi: 10.1016/S0006-3223(99)00140-7 – volume: 68 start-page: 362 year: 2008 ident: e_1_2_11_48_1 article-title: The auditory P3 from passive and active three‐stimulus oddball paradigm publication-title: Acta Neurobiologiae Experimentalis doi: 10.55782/ane-2008-1702 – ident: e_1_2_11_45_1 doi: 10.1111/1469-8986.3920147 – ident: e_1_2_11_23_1 doi: 10.3389/fpsyt.2012.00070 – ident: e_1_2_11_12_1 doi: 10.1007/s13311-014-0272-3 |
SSID | ssj0008645 |
Score | 2.447098 |
Snippet | Selective attention is a basic process required to maintain goal‐directed behavior by appropriately responding to target stimuli and suppressing reactions to... Selective attention is a basic process required to maintain goal-directed behavior by appropriately responding to target stimuli and suppressing reactions to... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2301 |
SubjectTerms | Adult Attention Attention - physiology auditory selective attention Cortex (frontal) Event-related potentials Female Frontal Lobe - physiology Hearing Humans Latency Locus coeruleus Locus Coeruleus - physiology Male Noise P300 Parietal Lobe - physiology Reaction Time Transcranial Direct Current Stimulation - methods Transcutaneous Electric Nerve Stimulation tRNS tVNS Vagus nerve Vagus Nerve - physiology Vagus Nerve Stimulation - methods Young Adult |
Title | Modulating auditory selective attention by non‐invasive brain stimulation: Differential effects of transcutaneous vagal nerve stimulation and transcranial random noise stimulation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.14128 https://www.ncbi.nlm.nih.gov/pubmed/30144194 https://www.proquest.com/docview/2331793387 https://www.proquest.com/docview/2093397178 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5CcmgvfSR9OE3DtpTSi0Ksx3q3PTkPEwLJoTTgQ0HsQwpp41WI7IBzyk_In-kf6i_pzGqlxn1A6cU2aKSVvDPffLOanQF4E6folhKpolLZLEL0KyOpShXFVMtsIGUs_L61o2N-cJIejrPxEnxo98I09SG6BTeyDI_XZOBK13eMvPji0MwRXhF_KVeLCNHHn6WjBPcNiqmcWiT6fByqClEWT3fmoi_6jWAu8lXvcEYP4XN7q02eydet2VRvmetfqjj-57M8ggeBiLJhozmPYalwq7A2dBiET-bsLfOpoX7NfRXu7bZt4dbg21Flfcsvd8oUbemoLues9t10EDgZlev0CZRMz5mr3Peb2zN3pShJnmlqR8EQUyahZ9h7thf6syDOnLOQW8Kqkk3JhZoZMteimtXsSqEjY46yM--ez5SzQRQ_6BL4ZasJDnxWL0g-gZPR_qfdgyj0fohM4jHYxqUobX-A8WQSSyRqfY2hm1UlV1wrJQxyKzPgtrDew5pYG26EQhF605cmT2EZH7J4Dmy7QMrIrci43E4LbTBuTjOZpKnKjFI87cG7VgtyEwqjU3-O87wNkHB6cj89PXjdiV401UD-JLTRqlIeAKHO4yQhKEzEoAevusM4dfR-pvkv85hWlySaCF7iWaOC3ShN5CvpZr0i_X34fP_w2P9Y_3fRF3AfiaBocuc2YHl6OSteItma6k1YGe7s7Yw2vXX9AGK1K5Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VcigXHi3QQIEBIcTFVePHZo24VH0olCYH1Eq5IGu9a6OWZo2apFJ66k_gz_CH-CXMrNem4SEhLkkkj712dp7r2e8DeBnGFJaiVAWlMklA3q8MUlWqIGQss16ahtLtWxsMRf84PhgloyV42-yFqfEh2gU3tgznr9nAeUH6mpUXp5bsnPzrDbjJjN6MnL_74Sd4lBSOopgB1QLZFSOPK8R9PO2pi9HotxRzMWN1IWf_DnxsbrbuNPm8OZvmm_ryFxzH_32au3Db56K4XSvPPVgq7CqsbVuqw8dzfIWuO9Qtu6_Cyk7DDLcG3waVcaxf9hMq3tVRnc9x4gh1yHciI3a6HkrM52gr-_3q64m9UNwnjzkzUiC5lbGnDXuDu56ihVzNGfr2EqxKnHIU1TNKXotqNsELRbEMLTdoXj8flTVelD74EvRlqjENfDJZkLwPx_t7Rzv9wNM_BDpybtiEpSxNt0clZRSmlKt1c6rejCqFErlSUlN6pXvCFMYFWR3mWmipSIRf9sXRA1imhyzWAbcKyhqFkYlIt-Ii11Q6x0kaxbFKtFIi7sDrRg0y7bHRmaLjLGtqJJqezE1PB160ol9qQJA_CW00upR5nzDJwihibxjJXgeet4dp6vgVTf1fZiEvMKVkJXSJh7UOtqPUxW_KN-s06e_DZ3sHQ_fj0b-LPoOV_tHgMDt8N3z_GG5RXijrVroNWJ6ez4onlHtN86fOxH4Af4cuPg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4aQwJeuGxcCgMMQoiXTG3iuDY8TeuqMViFEJP6gBQ5doJ2qTOt7aTyxE_gz_CH-CWc4zhh5SIhXtpKOYmT-ly-4xyfD-BZzDEsJUpHpbZphN6vjJQudRRTL7O-UrH0-9b2R2L3gO-N0_EKvGr2wtT9IdoFN7IM76_JwE9tecHIiyOHZo7u9RJc5qKriLdh8P5n7ygpPEMx9VOLZE-MQ1shKuNpT10ORr8hzGXA6iPO8AZ8bO61LjQ53pzP8k3z-Zc2jv_5MDfhekCibKtWnVuwUrg1WN9ymIVPFuw587WhftF9Da5uN7xw6_Btv7Ke88t9Ypr2dFRnCzb1dDroORn16_QVlCxfMFe571--HrpzTVXyLCc-CoZOZRJIw16yQSBoQUdzwkJxCatKNqMYauYIXYtqPmXnGiMZc1SeefF8pp0NovhBl8AvW01w4MPpkuRtOBjufNjejQL5Q2QS74RtXMrS9vqYUCaxQqTWyzF3s7oUWuRaS4PgyvSFLawPsSbOjTBSowi96uPJHVjFhyzuAesWiBmFlalQXV7kBhNnnqqEc50arQXvwItGCzITOqMTQcdJ1mRIOD2Zn54OPG1FT-t2IH8S2mhUKQseYZrFSUK-MJH9DjxpD-PU0Qua-r_MYlpeUmgjeIm7tQq2o9Spr6Kb9Yr09-Gznb2R_3H_30Ufw5V3g2H29vXozQO4hqBQ1nV0G7A6O5sXDxF4zfJH3sB-AOHhLO0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulating+auditory+selective+attention+by+non%E2%80%90invasive+brain+stimulation%3A+Differential+effects+of+transcutaneous+vagal+nerve+stimulation+and+transcranial+random+noise+stimulation&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Rufener%2C+Katharina+S.&rft.au=Geyer%2C+Ulrike&rft.au=Janitzky%2C+Kathrin&rft.au=Heinze%2C+Hans%E2%80%90Jochen&rft.date=2018-09-01&rft.issn=0953-816X&rft.eissn=1460-9568&rft.volume=48&rft.issue=6&rft.spage=2301&rft.epage=2309&rft_id=info:doi/10.1111%2Fejn.14128&rft.externalDBID=10.1111%252Fejn.14128&rft.externalDocID=EJN14128 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon |