Modulating auditory selective attention by non‐invasive brain stimulation: Differential effects of transcutaneous vagal nerve stimulation and transcranial random noise stimulation

Selective attention is a basic process required to maintain goal‐directed behavior by appropriately responding to target stimuli and suppressing reactions to non‐target stimuli. It has been proposed that auditory selective attention is linked to the activity of the locus coeruleus‐norepinergic (LC‐N...

Full description

Saved in:
Bibliographic Details
Published inThe European journal of neuroscience Vol. 48; no. 6; pp. 2301 - 2309
Main Authors Rufener, Katharina S., Geyer, Ulrike, Janitzky, Kathrin, Heinze, Hans‐Jochen, Zaehle, Tino
Format Journal Article
LanguageEnglish
Published France Wiley Subscription Services, Inc 01.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Selective attention is a basic process required to maintain goal‐directed behavior by appropriately responding to target stimuli and suppressing reactions to non‐target stimuli. It has been proposed that auditory selective attention is linked to the activity of the locus coeruleus‐norepinergic (LC‐NE) system and a large‐scale fronto‐parietal cortical network, but there is still sparse causal evidence for these assumptions. By applying transcutaneous vagal nerve stimulation (tVNS) and transcranial random noise stimulation (tRNS) over the frontal cortex, we systematically assessed the involvement of these subcortical and cortical components in the regulation of auditory selective attention. Using a single‐blinded, sham‐controlled, within‐subject design we analyzed online effects of tVNS and tRNS in 20 healthy participants during an auditory oddball paradigm. We show significant stimulation‐dependent modulations of auditory selective attention on the behavioral and electrophysiological level. Compared to sham, tVNS increased the P3 amplitude, while tRNS reduced the reaction time to target stimuli. Moreover, both techniques reduced the P3 latency. Our data provide evidence for the functional relevance of the subcortical NE system in the regulation of neural resources that allows a phasic response to incoming target stimuli. They indicate that frontal cortex structures are crucially involved in the successful evaluation of the respective information. Moreover, our results are in favor of the LC‐P3 hypothesis claiming the vital role of the NE system in auditory selective attention and in the generation of the P3. Of note, the effects of tVNS on auditory selective attention are comparable with those evoked by pharmacological interventions and invasive vagal nerve stimulation. By applying transcutaneous vagal nerve stimulation (tVNS) and transcranial random noise stimulation (tRNS) over the frontal cortex, we assessed the involvement of the locus coeruleus‐norepinergic (LC‐NE) system and the fronto‐parietal cortical network on the auditory P3. Compared to sham, tVNS increased the P3 amplitude while tRNS reduced the reaction time to target stimuli. Moreover, both techniques reduced the P3 latency. Our results are in favor of the LC‐P3 hypothesis claiming the vital role of the NE system in auditory selective attention and in the generation of the P3.
AbstractList Selective attention is a basic process required to maintain goal‐directed behavior by appropriately responding to target stimuli and suppressing reactions to non‐target stimuli. It has been proposed that auditory selective attention is linked to the activity of the locus coeruleus‐norepinergic (LC‐NE) system and a large‐scale fronto‐parietal cortical network, but there is still sparse causal evidence for these assumptions. By applying transcutaneous vagal nerve stimulation (tVNS) and transcranial random noise stimulation (tRNS) over the frontal cortex, we systematically assessed the involvement of these subcortical and cortical components in the regulation of auditory selective attention. Using a single‐blinded, sham‐controlled, within‐subject design we analyzed online effects of tVNS and tRNS in 20 healthy participants during an auditory oddball paradigm. We show significant stimulation‐dependent modulations of auditory selective attention on the behavioral and electrophysiological level. Compared to sham, tVNS increased the P3 amplitude, while tRNS reduced the reaction time to target stimuli. Moreover, both techniques reduced the P3 latency. Our data provide evidence for the functional relevance of the subcortical NE system in the regulation of neural resources that allows a phasic response to incoming target stimuli. They indicate that frontal cortex structures are crucially involved in the successful evaluation of the respective information. Moreover, our results are in favor of the LC‐P3 hypothesis claiming the vital role of the NE system in auditory selective attention and in the generation of the P3. Of note, the effects of tVNS on auditory selective attention are comparable with those evoked by pharmacological interventions and invasive vagal nerve stimulation.
Selective attention is a basic process required to maintain goal-directed behavior by appropriately responding to target stimuli and suppressing reactions to non-target stimuli. It has been proposed that auditory selective attention is linked to the activity of the locus coeruleus-norepinergic (LC-NE) system and a large-scale fronto-parietal cortical network, but there is still sparse causal evidence for these assumptions. By applying transcutaneous vagal nerve stimulation (tVNS) and transcranial random noise stimulation (tRNS) over the frontal cortex, we systematically assessed the involvement of these subcortical and cortical components in the regulation of auditory selective attention. Using a single-blinded, sham-controlled, within-subject design we analyzed online effects of tVNS and tRNS in 20 healthy participants during an auditory oddball paradigm. We show significant stimulation-dependent modulations of auditory selective attention on the behavioral and electrophysiological level. Compared to sham, tVNS increased the P3 amplitude, while tRNS reduced the reaction time to target stimuli. Moreover, both techniques reduced the P3 latency. Our data provide evidence for the functional relevance of the subcortical NE system in the regulation of neural resources that allows a phasic response to incoming target stimuli. They indicate that frontal cortex structures are crucially involved in the successful evaluation of the respective information. Moreover, our results are in favor of the LC-P3 hypothesis claiming the vital role of the NE system in auditory selective attention and in the generation of the P3. Of note, the effects of tVNS on auditory selective attention are comparable with those evoked by pharmacological interventions and invasive vagal nerve stimulation.Selective attention is a basic process required to maintain goal-directed behavior by appropriately responding to target stimuli and suppressing reactions to non-target stimuli. It has been proposed that auditory selective attention is linked to the activity of the locus coeruleus-norepinergic (LC-NE) system and a large-scale fronto-parietal cortical network, but there is still sparse causal evidence for these assumptions. By applying transcutaneous vagal nerve stimulation (tVNS) and transcranial random noise stimulation (tRNS) over the frontal cortex, we systematically assessed the involvement of these subcortical and cortical components in the regulation of auditory selective attention. Using a single-blinded, sham-controlled, within-subject design we analyzed online effects of tVNS and tRNS in 20 healthy participants during an auditory oddball paradigm. We show significant stimulation-dependent modulations of auditory selective attention on the behavioral and electrophysiological level. Compared to sham, tVNS increased the P3 amplitude, while tRNS reduced the reaction time to target stimuli. Moreover, both techniques reduced the P3 latency. Our data provide evidence for the functional relevance of the subcortical NE system in the regulation of neural resources that allows a phasic response to incoming target stimuli. They indicate that frontal cortex structures are crucially involved in the successful evaluation of the respective information. Moreover, our results are in favor of the LC-P3 hypothesis claiming the vital role of the NE system in auditory selective attention and in the generation of the P3. Of note, the effects of tVNS on auditory selective attention are comparable with those evoked by pharmacological interventions and invasive vagal nerve stimulation.
Selective attention is a basic process required to maintain goal‐directed behavior by appropriately responding to target stimuli and suppressing reactions to non‐target stimuli. It has been proposed that auditory selective attention is linked to the activity of the locus coeruleus‐norepinergic (LC‐NE) system and a large‐scale fronto‐parietal cortical network, but there is still sparse causal evidence for these assumptions. By applying transcutaneous vagal nerve stimulation (tVNS) and transcranial random noise stimulation (tRNS) over the frontal cortex, we systematically assessed the involvement of these subcortical and cortical components in the regulation of auditory selective attention. Using a single‐blinded, sham‐controlled, within‐subject design we analyzed online effects of tVNS and tRNS in 20 healthy participants during an auditory oddball paradigm. We show significant stimulation‐dependent modulations of auditory selective attention on the behavioral and electrophysiological level. Compared to sham, tVNS increased the P3 amplitude, while tRNS reduced the reaction time to target stimuli. Moreover, both techniques reduced the P3 latency. Our data provide evidence for the functional relevance of the subcortical NE system in the regulation of neural resources that allows a phasic response to incoming target stimuli. They indicate that frontal cortex structures are crucially involved in the successful evaluation of the respective information. Moreover, our results are in favor of the LC‐P3 hypothesis claiming the vital role of the NE system in auditory selective attention and in the generation of the P3. Of note, the effects of tVNS on auditory selective attention are comparable with those evoked by pharmacological interventions and invasive vagal nerve stimulation. By applying transcutaneous vagal nerve stimulation (tVNS) and transcranial random noise stimulation (tRNS) over the frontal cortex, we assessed the involvement of the locus coeruleus‐norepinergic (LC‐NE) system and the fronto‐parietal cortical network on the auditory P3. Compared to sham, tVNS increased the P3 amplitude while tRNS reduced the reaction time to target stimuli. Moreover, both techniques reduced the P3 latency. Our results are in favor of the LC‐P3 hypothesis claiming the vital role of the NE system in auditory selective attention and in the generation of the P3.
Author Geyer, Ulrike
Janitzky, Kathrin
Rufener, Katharina S.
Zaehle, Tino
Heinze, Hans‐Jochen
Author_xml – sequence: 1
  givenname: Katharina S.
  orcidid: 0000-0002-9994-1171
  surname: Rufener
  fullname: Rufener, Katharina S.
  organization: Center for Behavioral Brain Sciences
– sequence: 2
  givenname: Ulrike
  surname: Geyer
  fullname: Geyer, Ulrike
  organization: Otto‐von‐Guericke University
– sequence: 3
  givenname: Kathrin
  surname: Janitzky
  fullname: Janitzky, Kathrin
  organization: Krankenhaus St. Elisabeth
– sequence: 4
  givenname: Hans‐Jochen
  surname: Heinze
  fullname: Heinze, Hans‐Jochen
  organization: Center for Behavioral Brain Sciences
– sequence: 5
  givenname: Tino
  surname: Zaehle
  fullname: Zaehle, Tino
  email: tino.zaehle@ovgu.de
  organization: Center for Behavioral Brain Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30144194$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9uFSEUxompsbfVhS9gSNzYxbQwzDDgrqn1X6puNHFHGGAabmagAnPN3fkIfRlfyCfx3D8abaIsgOT8znfg-47QQYjBIfSYklMK68wtwyltaC3uoQVtOKlky8UBWhDZskpQ_vkQHeW8JIQI3rQP0CEjtGmobBbo-7to51EXH66xnq0vMa1xdqMzxa8c1qW4UHwMuF9jmPrj260PK503tT5pH3AuftoKxPAcv_DD4NKmQ4_Ywd2UjOOAS9Ihm7no4OKc8UpfQz24BCp_9GMd7B6FbSMBh40TDPb5L_Ihuj_oMbtH-_MYfXp5-fHidXX14dWbi_OryrCWiUraehCDpR2VlNWybgntKW2sHrjmvdbCEM5Mx62zYF7Tmbo33AgNiJRgETtGz3a6Nyl-mV0uavLZuHHcfUTVRDImO9oJQJ_eQZdxTgFep2rGaAeg6IB6sqfmfnJW3SQ_6bRWvwIB4GQHmBRzTm74jVCiNmErCFttwwb27A5rfNn6Ayb68X8dX_3o1v-WVpdv3-86fgL5osCk
CitedBy_id crossref_primary_10_1016_j_neurom_2021_11_009
crossref_primary_10_1038_s41598_024_68015_4
crossref_primary_10_1016_j_neubiorev_2023_105221
crossref_primary_10_3390_brainsci10080531
crossref_primary_10_1016_j_clinph_2021_11_079
crossref_primary_10_12677_AP_2023_131023
crossref_primary_10_1016_j_autneu_2021_102901
crossref_primary_10_1097_HRP_0000000000000301
crossref_primary_10_1111_psyp_13571
crossref_primary_10_3389_fnagi_2023_1145207
crossref_primary_10_1186_s12883_023_03320_5
crossref_primary_10_1016_j_biopsycho_2023_108646
crossref_primary_10_1016_j_brs_2022_09_009
crossref_primary_10_1016_j_neubiorev_2022_104702
crossref_primary_10_3389_fnhum_2021_699473
crossref_primary_10_1016_j_jneuroling_2021_100990
crossref_primary_10_1111_ner_13346
crossref_primary_10_1093_ijnp_pyz072
crossref_primary_10_1523_ENEURO_0248_21_2021
crossref_primary_10_1007_s13534_024_00361_8
crossref_primary_10_1044_2023_JSLHR_22_00596
crossref_primary_10_3389_fnins_2023_1096865
crossref_primary_10_1016_j_brs_2022_06_006
crossref_primary_10_1016_j_brs_2023_06_006
crossref_primary_10_3389_fnhum_2025_1539416
crossref_primary_10_1016_j_psyneuen_2022_105719
crossref_primary_10_3389_fneur_2020_00371
crossref_primary_10_3389_fnins_2022_922424
crossref_primary_10_3389_fpsyg_2020_01276
crossref_primary_10_3389_flang_2024_1403080
crossref_primary_10_1007_s11571_025_10220_6
crossref_primary_10_31083_j_jin2303059
crossref_primary_10_3389_fnins_2022_897303
crossref_primary_10_1111_ner_13313
crossref_primary_10_3390_brainsci14070690
crossref_primary_10_3389_fnhum_2020_568051
crossref_primary_10_3390_brainsci10060404
Cites_doi 10.1162/jocn_a_00851
10.1016/j.psc.2013.01.006
10.1016/j.brainres.2017.03.021
10.1523/JNEUROSCI.2002-11.2011
10.1523/JNEUROSCI.09-01-00081.1989
10.1006/nimg.2001.0839
10.1017/S0048577201990559
10.1111/1469-8986.3820343
10.1016/S0167-8760(00)00142-2
10.1016/j.biopsych.2004.08.019
10.1097/00004691-199210000-00002
10.1016/j.clinph.2007.11.175
10.1016/j.biopsych.2008.04.037
10.1016/j.clinph.2012.09.006
10.3389/fncel.2017.00162
10.1523/JNEUROSCI.4248-08.2008
10.1155/2016/3616807
10.1146/annurev.neuro.28.061604.135709
10.1016/j.biopsych.2006.04.022
10.1037/0033-2909.131.4.510
10.1016/j.ijporl.2017.01.034
10.1016/j.clinph.2015.10.051
10.1016/0165-1781(89)90206-0
10.3758/BF03212388
10.3389/fnins.2017.00367
10.1016/j.brs.2011.11.004
10.1016/0301-0511(95)05130-9
10.1111/psyp.12544
10.1016/j.brainres.2010.05.016
10.1016/j.euroneuro.2015.03.015
10.1016/j.brs.2015.11.003
10.1016/j.conb.2004.03.012
10.1111/j.1469-8986.2010.01057.x
10.1038/mp.2011.185
10.1016/0168-5597(84)90016-9
10.1016/j.neurobiolaging.2015.02.023
10.3389/fpsyt.2013.00158
10.1016/j.clinph.2007.04.019
10.1016/S0028-3932(98)00141-9
10.1016/0167-8760(95)00028-Q
10.1126/science.2392679
10.1016/S0006-3223(99)00140-7
10.55782/ane-2008-1702
10.1111/1469-8986.3920147
10.3389/fpsyt.2012.00070
10.1007/s13311-014-0272-3
ContentType Journal Article
Copyright 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Copyright © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
Copyright_xml – notice: 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
– notice: 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
– notice: Copyright © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
P64
7X8
DOI 10.1111/ejn.14128
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Chemoreception Abstracts
Engineering Research Database
Technology Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Chemoreception Abstracts
CrossRef
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1460-9568
EndPage 2309
ExternalDocumentID 30144194
10_1111_ejn_14128
EJN14128
Genre article
Journal Article
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EAS
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EPS
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
Q~Q
R.K
RIG
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHG
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
XG1
YFH
ZGI
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c3538-9d2f8fd171913292501b114daf6a6baa8c063c76ded12847c2bc6c8a14d990143
IEDL.DBID DR2
ISSN 0953-816X
1460-9568
IngestDate Fri Jul 11 07:49:19 EDT 2025
Sun Jul 13 04:46:34 EDT 2025
Mon Jul 21 06:06:00 EDT 2025
Tue Jul 01 03:02:18 EDT 2025
Thu Apr 24 23:01:31 EDT 2025
Wed Jan 22 16:38:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords tVNS
auditory selective attention
P300
tRNS
Language English
License 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3538-9d2f8fd171913292501b114daf6a6baa8c063c76ded12847c2bc6c8a14d990143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9994-1171
PMID 30144194
PQID 2331793387
PQPubID 34057
PageCount 9
ParticipantIDs proquest_miscellaneous_2093397178
proquest_journals_2331793387
pubmed_primary_30144194
crossref_primary_10_1111_ejn_14128
crossref_citationtrail_10_1111_ejn_14128
wiley_primary_10_1111_ejn_14128_EJN14128
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2018
2018-09-00
20180901
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: September 2018
PublicationDecade 2010
PublicationPlace France
PublicationPlace_xml – name: France
– name: Chichester
PublicationTitle The European journal of neuroscience
PublicationTitleAlternate Eur J Neurosci
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2002; 39
2015; 36
2015; 6
2010; 16
1990; 249
2013; 4
2005; 131
2017; 1664
2015; 52
1973; 14
1989; 9
1999; 46
2011; 31
2013; 124
2016; 2016
2012; 18
2016; 127
2005; 28
1989; 28
1995; 20
2006; 60
1995; 41
1992; 9
2017; 96
2015; 25
2007; 118
2013; 36
2012; 3
2015; 27
1984; 59
2004; 14
2017; 11
1999; 37
2004; 57
2008; 28
2008; 119
2008; 68
2001; 38
2001; 39
2011; 48
2008; 64
2012; 5
2001; 14
2016; 9
2014; 11
e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_2_1
Wronka E. (e_1_2_11_48_1) 2008; 68
Leusden J. W. R. (e_1_2_11_24_1) 2015; 6
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_46_1
e_1_2_11_47_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_41_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
e_1_2_11_37_1
e_1_2_11_38_1
e_1_2_11_39_1
e_1_2_11_19_1
References_xml – volume: 39
  start-page: 213
  year: 2001
  end-page: 220
  article-title: Topological distribution of oddball “P300” responses
  publication-title: International Journal of Psychophysiology
– volume: 6
  start-page: 102
  year: 2015
  article-title: Transcutaneous Vagal Nerve Stimulation (tVNS): A new neuromodulation tool in healthy humans?
  publication-title: Frontiers in Psychology
– volume: 68
  start-page: 362
  year: 2008
  end-page: 372
  article-title: The auditory P3 from passive and active three‐stimulus oddball paradigm
  publication-title: Acta Neurobiologiae Experimentalis
– volume: 64
  start-page: 626
  year: 2008
  end-page: 635
  article-title: Cognition‐enhancing doses of methylphenidate preferentially increase prefrontal cortex neuronal responsiveness
  publication-title: Biological Psychiatry
– volume: 28
  start-page: 255
  year: 1989
  end-page: 262
  article-title: The effect of clonidine on auditory P300
  publication-title: Psychiatry Research
– volume: 9
  start-page: 456
  year: 1992
  end-page: 479
  article-title: The P300 wave of the human event‐related potential
  publication-title: Journal of Clinical Neurophysiology
– volume: 3
  start-page: 1
  year: 2012
  end-page: 7
  article-title: Transcutaneous vagus nerve stimulation: Retrospective assessment of cardiac safety in a pilot study
  publication-title: Frontiers in Psychiatry
– volume: 118
  start-page: 2128
  year: 2007
  end-page: 2148
  article-title: Updating P300: An integrative theory of P3a and P3b
  publication-title: Clinical Neurophysiology
– volume: 9
  start-page: 81
  year: 1989
  end-page: 93
  article-title: Effects of locus coeruleus lesions on auditory, long‐latency, event‐related potentials in monkey
  publication-title: Journal of Neuroscience
– volume: 60
  start-page: 1111
  year: 2006
  end-page: 1120
  article-title: Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function
  publication-title: Biological Psychiatry
– volume: 59
  start-page: 9
  year: 1984
  end-page: 20
  article-title: Decreased response to novel stimuli after prefrontal lesions in man
  publication-title: Electroencephalography and Clinical Neurophysiology
– volume: 37
  start-page: 1
  year: 1999
  end-page: 9
  article-title: Functional anatomy of intrinsic alertness: Evidence for a fronto‐parietal‐thalamic brainstem network in the right hemisphere
  publication-title: Neuropsychologia
– volume: 96
  start-page: 152
  year: 2017
  end-page: 155
  article-title: Methylphenidate effects on P300 responses from children and adolescents
  publication-title: International Journal of Pediatric Otorhinolaryngology
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 12
  article-title: Transcranial alternating current and random noise stimulation: Possible mechanisms
  publication-title: Neural Plasticity
– volume: 52
  start-page: 1620
  year: 2015
  end-page: 1631
  article-title: Noradrenergic and cholinergic modulation of late ERP responses to deviant stimuli
  publication-title: Psychophysiology
– volume: 11
  start-page: 367
  year: 2017
  article-title: Reduced prefrontal cortex activation in children with attention‐deficit/hyperactivity disorder during go/no‐go task: A functional near‐infrared spectroscopy study
  publication-title: Frontiers in Neuroscience
– volume: 14
  start-page: 265
  year: 1973
  end-page: 272
  article-title: Vertex potentials evoked during auditory signal detection: Relation to decision criteria
  publication-title: Perception & Psychophysics
– volume: 39
  start-page: 147
  year: 2002
  end-page: 157
  article-title: Alpha2‐noradrenergic effects on ERP and behavioral indices of auditory information processing
  publication-title: Psychophysiology
– volume: 20
  start-page: 59
  year: 1995
  end-page: 74
  article-title: On the relationship between EEG and ERP variability
  publication-title: International Journal of Psychophysiology
– volume: 127
  start-page: 1351
  year: 2016
  end-page: 1357
  article-title: An ERP source imaging study of the oddball task in children with attention deficit/hyperactivity disorder
  publication-title: Clinical Neurophysiology
– volume: 9
  start-page: 356
  year: 2016
  end-page: 363
  article-title: Transcutaneous vagus nerve stimulation (tVNS) for treatment of drug‐resistant epilepsy: A randomized, double‐blind clinical trial (cMPsE02)
  publication-title: Brain Stimulation
– volume: 131
  start-page: 510
  year: 2005
  end-page: 532
  article-title: Decision making, the P3, and the locus coeruleus–norepinephrine system
  publication-title: Psychological Bulletin
– volume: 25
  start-page: 773
  year: 2015
  end-page: 778
  article-title: Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during action cascading processes
  publication-title: European Neuropsychopharmacology
– volume: 119
  start-page: 968
  year: 2008
  end-page: 970
  article-title: P3b: Towards some decision about memory
  publication-title: Clinical Neurophysiology
– volume: 31
  start-page: 15416
  year: 2011
  end-page: 15423
  article-title: Random noise stimulation improves neuroplasticity in perceptual learning
  publication-title: Journal of Neuroscience
– volume: 124
  start-page: 644
  year: 2013
  end-page: 657
  article-title: Ten years on: A follow‐up review of ERP research in attention‐deficit/hyperactivity disorder
  publication-title: Clinical Neurophysiology
– volume: 28
  start-page: 403
  year: 2005
  end-page: 450
  article-title: An integrative theory of locus coeruleus‐norepinephrine function: Adaptive gain and optimal performance
  publication-title: Annual Review of Neuroscience
– volume: 57
  start-page: 1377
  year: 2004
  end-page: 1384
  article-title: Neurobiology of executive functions: Catecholamine influences on prefrontal cortical functions
  publication-title: Biological Psychiatry
– volume: 11
  start-page: 612
  year: 2014
  end-page: 622
  article-title: The P3 event‐related potential is a biomarker for the efficacy of vagus nerve stimulation in patients with epilepsy
  publication-title: Neurotherapeutics: the Journal of the American Society for Experimental NeuroTherapeutics
– volume: 27
  start-page: 2126
  year: 2015
  end-page: 2132
  article-title: Transcutaneous vagus nerve stimulation enhances post‐error slowing
  publication-title: Journal of Cognitive Neuroscience
– volume: 14
  start-page: 76
  year: 2001
  end-page: 84
  article-title: On the functional neuroanatomy of intrinsic and phasic alertness
  publication-title: NeuroImage
– volume: 46
  start-page: 1309
  year: 1999
  end-page: 1320
  article-title: Role of locus coeruleus in attention and behavioral flexibility
  publication-title: Biological Psychiatry
– volume: 16
  start-page: 173
  year: 2010
  end-page: 184
  article-title: Role of frontal and parietal cortices in the control of bottom‐up and top‐down attention in humans
  publication-title: Brain Research
– volume: 36
  start-page: 169
  year: 2013
  end-page: 176
  article-title: Cranial electrotherapy stimulation for treatment of anxiety, depression, and insomnia
  publication-title: Psychiatric Clinics of North America
– volume: 5
  start-page: 505
  year: 2012
  end-page: 511
  article-title: Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities
  publication-title: Brain Stimulation
– volume: 41
  start-page: 103
  year: 1995
  end-page: 146
  article-title: Cognitive and biological determinants of P300: An integrative review
  publication-title: Biological Psychology
– volume: 38
  start-page: 557
  year: 2001
  end-page: 577
  article-title: On the utility of P3 amplitude as a measure of processing capacity
  publication-title: Psychophysiology
– volume: 14
  start-page: 212
  year: 2004
  end-page: 217
  article-title: Parietal cortex and attention
  publication-title: Current Opinion in Neurobiology
– volume: 249
  start-page: 892
  year: 1990
  end-page: 895
  article-title: A network model of catecholamine effects: Gain, signal‐to‐noise ratio, and behavior
  publication-title: Science
– volume: 48
  start-page: 162
  year: 2011
  end-page: 175
  article-title: The anatomical and functional relationship between the P3 and autonomic components of the orienting response
  publication-title: Psychophysiology
– volume: 28
  start-page: 14147
  year: 2008
  end-page: 14155
  article-title: Increasing human brain excitability by transcranial high‐frequency random noise stimulation
  publication-title: Journal of Neuroscience
– volume: 11
  start-page: 162
  year: 2017
  article-title: Transcranial random noise stimulation (tRNS) shapes the processing of rapidly changing auditory information
  publication-title: Frontiers in Cellular Neuroscience
– volume: 18
  start-page: 236
  year: 2012
  end-page: 244
  article-title: Disorder‐specific functional abnormalities during sustained attention in youth with attention deficit hyperactivity disorder (ADHD) and with autism
  publication-title: Molecular Psychiatry
– volume: 1664
  start-page: 25
  year: 2017
  end-page: 36
  article-title: Brain activity associated with selective attention, divided attention and distraction
  publication-title: Brain Research
– volume: 4
  start-page: 158
  year: 2013
  article-title: Head‐to‐head comparison of transcranial random noise stimulation, transcranial AC stimulation, and transcranial DC stimulation for tinnitus
  publication-title: Frontiers in Psychiatry
– volume: 36
  start-page: 1860
  year: 2015
  end-page: 1867
  article-title: Neurobiology of aging
  publication-title: Neurobiology of Aging
– volume: 38
  start-page: 343
  year: 2001
  end-page: 358
  article-title: Spatiotemporal analysis of the late ERP responses to deviant stimuli
  publication-title: Psychophysiology
– ident: e_1_2_11_37_1
  doi: 10.1162/jocn_a_00851
– ident: e_1_2_11_20_1
  doi: 10.1016/j.psc.2013.01.006
– ident: e_1_2_11_35_1
  doi: 10.1016/j.brainres.2017.03.021
– ident: e_1_2_11_14_1
  doi: 10.1523/JNEUROSCI.2002-11.2011
– ident: e_1_2_11_31_1
  doi: 10.1523/JNEUROSCI.09-01-00081.1989
– ident: e_1_2_11_43_1
  doi: 10.1006/nimg.2001.0839
– ident: e_1_2_11_22_1
  doi: 10.1017/S0048577201990559
– ident: e_1_2_11_39_1
  doi: 10.1111/1469-8986.3820343
– ident: e_1_2_11_6_1
  doi: 10.1016/S0167-8760(00)00142-2
– ident: e_1_2_11_3_1
  doi: 10.1016/j.biopsych.2004.08.019
– ident: e_1_2_11_30_1
  doi: 10.1097/00004691-199210000-00002
– ident: e_1_2_11_47_1
  doi: 10.1016/j.clinph.2007.11.175
– ident: e_1_2_11_13_1
  doi: 10.1016/j.biopsych.2008.04.037
– ident: e_1_2_11_18_1
  doi: 10.1016/j.clinph.2012.09.006
– ident: e_1_2_11_34_1
  doi: 10.3389/fncel.2017.00162
– ident: e_1_2_11_44_1
  doi: 10.1523/JNEUROSCI.4248-08.2008
– ident: e_1_2_11_2_1
  doi: 10.1155/2016/3616807
– ident: e_1_2_11_4_1
  doi: 10.1146/annurev.neuro.28.061604.135709
– ident: e_1_2_11_9_1
  doi: 10.1016/j.biopsych.2006.04.022
– ident: e_1_2_11_28_1
  doi: 10.1037/0033-2909.131.4.510
– ident: e_1_2_11_36_1
  doi: 10.1016/j.ijporl.2017.01.034
– ident: e_1_2_11_17_1
  doi: 10.1016/j.clinph.2015.10.051
– ident: e_1_2_11_19_1
  doi: 10.1016/0165-1781(89)90206-0
– ident: e_1_2_11_40_1
  doi: 10.3758/BF03212388
– ident: e_1_2_11_26_1
  doi: 10.3389/fnins.2017.00367
– ident: e_1_2_11_27_1
  doi: 10.1016/j.brs.2011.11.004
– ident: e_1_2_11_33_1
  doi: 10.1016/0301-0511(95)05130-9
– ident: e_1_2_11_10_1
  doi: 10.1111/psyp.12544
– ident: e_1_2_11_25_1
  doi: 10.1016/j.brainres.2010.05.016
– ident: e_1_2_11_41_1
  doi: 10.1016/j.euroneuro.2015.03.015
– ident: e_1_2_11_7_1
  doi: 10.1016/j.brs.2015.11.003
– ident: e_1_2_11_8_1
  doi: 10.1016/j.conb.2004.03.012
– ident: e_1_2_11_29_1
  doi: 10.1111/j.1469-8986.2010.01057.x
– ident: e_1_2_11_11_1
  doi: 10.1038/mp.2011.185
– ident: e_1_2_11_21_1
  doi: 10.1016/0168-5597(84)90016-9
– ident: e_1_2_11_16_1
  doi: 10.1016/j.neurobiolaging.2015.02.023
– volume: 6
  start-page: 102
  year: 2015
  ident: e_1_2_11_24_1
  article-title: Transcutaneous Vagal Nerve Stimulation (tVNS): A new neuromodulation tool in healthy humans?
  publication-title: Frontiers in Psychology
– ident: e_1_2_11_46_1
  doi: 10.3389/fpsyt.2013.00158
– ident: e_1_2_11_32_1
  doi: 10.1016/j.clinph.2007.04.019
– ident: e_1_2_11_42_1
  doi: 10.1016/S0028-3932(98)00141-9
– ident: e_1_2_11_15_1
  doi: 10.1016/0167-8760(95)00028-Q
– ident: e_1_2_11_38_1
  doi: 10.1126/science.2392679
– ident: e_1_2_11_5_1
  doi: 10.1016/S0006-3223(99)00140-7
– volume: 68
  start-page: 362
  year: 2008
  ident: e_1_2_11_48_1
  article-title: The auditory P3 from passive and active three‐stimulus oddball paradigm
  publication-title: Acta Neurobiologiae Experimentalis
  doi: 10.55782/ane-2008-1702
– ident: e_1_2_11_45_1
  doi: 10.1111/1469-8986.3920147
– ident: e_1_2_11_23_1
  doi: 10.3389/fpsyt.2012.00070
– ident: e_1_2_11_12_1
  doi: 10.1007/s13311-014-0272-3
SSID ssj0008645
Score 2.447098
Snippet Selective attention is a basic process required to maintain goal‐directed behavior by appropriately responding to target stimuli and suppressing reactions to...
Selective attention is a basic process required to maintain goal-directed behavior by appropriately responding to target stimuli and suppressing reactions to...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2301
SubjectTerms Adult
Attention
Attention - physiology
auditory selective attention
Cortex (frontal)
Event-related potentials
Female
Frontal Lobe - physiology
Hearing
Humans
Latency
Locus coeruleus
Locus Coeruleus - physiology
Male
Noise
P300
Parietal Lobe - physiology
Reaction Time
Transcranial Direct Current Stimulation - methods
Transcutaneous Electric Nerve Stimulation
tRNS
tVNS
Vagus nerve
Vagus Nerve - physiology
Vagus Nerve Stimulation - methods
Young Adult
Title Modulating auditory selective attention by non‐invasive brain stimulation: Differential effects of transcutaneous vagal nerve stimulation and transcranial random noise stimulation
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.14128
https://www.ncbi.nlm.nih.gov/pubmed/30144194
https://www.proquest.com/docview/2331793387
https://www.proquest.com/docview/2093397178
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5CcmgvfSR9OE3DtpTSi0Ksx3q3PTkPEwLJoTTgQ0HsQwpp41WI7IBzyk_In-kf6i_pzGqlxn1A6cU2aKSVvDPffLOanQF4E6folhKpolLZLEL0KyOpShXFVMtsIGUs_L61o2N-cJIejrPxEnxo98I09SG6BTeyDI_XZOBK13eMvPji0MwRXhF_KVeLCNHHn6WjBPcNiqmcWiT6fByqClEWT3fmoi_6jWAu8lXvcEYP4XN7q02eydet2VRvmetfqjj-57M8ggeBiLJhozmPYalwq7A2dBiET-bsLfOpoX7NfRXu7bZt4dbg21Flfcsvd8oUbemoLues9t10EDgZlev0CZRMz5mr3Peb2zN3pShJnmlqR8EQUyahZ9h7thf6syDOnLOQW8Kqkk3JhZoZMteimtXsSqEjY46yM--ez5SzQRQ_6BL4ZasJDnxWL0g-gZPR_qfdgyj0fohM4jHYxqUobX-A8WQSSyRqfY2hm1UlV1wrJQxyKzPgtrDew5pYG26EQhF605cmT2EZH7J4Dmy7QMrIrci43E4LbTBuTjOZpKnKjFI87cG7VgtyEwqjU3-O87wNkHB6cj89PXjdiV401UD-JLTRqlIeAKHO4yQhKEzEoAevusM4dfR-pvkv85hWlySaCF7iWaOC3ShN5CvpZr0i_X34fP_w2P9Y_3fRF3AfiaBocuc2YHl6OSteItma6k1YGe7s7Yw2vXX9AGK1K5Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VcigXHi3QQIEBIcTFVePHZo24VH0olCYH1Eq5IGu9a6OWZo2apFJ66k_gz_CH-CXMrNem4SEhLkkkj712dp7r2e8DeBnGFJaiVAWlMklA3q8MUlWqIGQss16ahtLtWxsMRf84PhgloyV42-yFqfEh2gU3tgznr9nAeUH6mpUXp5bsnPzrDbjJjN6MnL_74Sd4lBSOopgB1QLZFSOPK8R9PO2pi9HotxRzMWN1IWf_DnxsbrbuNPm8OZvmm_ryFxzH_32au3Db56K4XSvPPVgq7CqsbVuqw8dzfIWuO9Qtu6_Cyk7DDLcG3waVcaxf9hMq3tVRnc9x4gh1yHciI3a6HkrM52gr-_3q64m9UNwnjzkzUiC5lbGnDXuDu56ihVzNGfr2EqxKnHIU1TNKXotqNsELRbEMLTdoXj8flTVelD74EvRlqjENfDJZkLwPx_t7Rzv9wNM_BDpybtiEpSxNt0clZRSmlKt1c6rejCqFErlSUlN6pXvCFMYFWR3mWmipSIRf9sXRA1imhyzWAbcKyhqFkYlIt-Ii11Q6x0kaxbFKtFIi7sDrRg0y7bHRmaLjLGtqJJqezE1PB160ol9qQJA_CW00upR5nzDJwihibxjJXgeet4dp6vgVTf1fZiEvMKVkJXSJh7UOtqPUxW_KN-s06e_DZ3sHQ_fj0b-LPoOV_tHgMDt8N3z_GG5RXijrVroNWJ6ez4onlHtN86fOxH4Af4cuPg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4aQwJeuGxcCgMMQoiXTG3iuDY8TeuqMViFEJP6gBQ5doJ2qTOt7aTyxE_gz_CH-CWc4zhh5SIhXtpKOYmT-ly-4xyfD-BZzDEsJUpHpbZphN6vjJQudRRTL7O-UrH0-9b2R2L3gO-N0_EKvGr2wtT9IdoFN7IM76_JwE9tecHIiyOHZo7u9RJc5qKriLdh8P5n7ygpPEMx9VOLZE-MQ1shKuNpT10ORr8hzGXA6iPO8AZ8bO61LjQ53pzP8k3z-Zc2jv_5MDfhekCibKtWnVuwUrg1WN9ymIVPFuw587WhftF9Da5uN7xw6_Btv7Ke88t9Ypr2dFRnCzb1dDroORn16_QVlCxfMFe571--HrpzTVXyLCc-CoZOZRJIw16yQSBoQUdzwkJxCatKNqMYauYIXYtqPmXnGiMZc1SeefF8pp0NovhBl8AvW01w4MPpkuRtOBjufNjejQL5Q2QS74RtXMrS9vqYUCaxQqTWyzF3s7oUWuRaS4PgyvSFLawPsSbOjTBSowi96uPJHVjFhyzuAesWiBmFlalQXV7kBhNnnqqEc50arQXvwItGCzITOqMTQcdJ1mRIOD2Zn54OPG1FT-t2IH8S2mhUKQseYZrFSUK-MJH9DjxpD-PU0Qua-r_MYlpeUmgjeIm7tQq2o9Spr6Kb9Yr09-Gznb2R_3H_30Ufw5V3g2H29vXozQO4hqBQ1nV0G7A6O5sXDxF4zfJH3sB-AOHhLO0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulating+auditory+selective+attention+by+non%E2%80%90invasive+brain+stimulation%3A+Differential+effects+of+transcutaneous+vagal+nerve+stimulation+and+transcranial+random+noise+stimulation&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Rufener%2C+Katharina+S.&rft.au=Geyer%2C+Ulrike&rft.au=Janitzky%2C+Kathrin&rft.au=Heinze%2C+Hans%E2%80%90Jochen&rft.date=2018-09-01&rft.issn=0953-816X&rft.eissn=1460-9568&rft.volume=48&rft.issue=6&rft.spage=2301&rft.epage=2309&rft_id=info:doi/10.1111%2Fejn.14128&rft.externalDBID=10.1111%252Fejn.14128&rft.externalDocID=EJN14128
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon