The Fam50a positively regulates ameloblast differentiation via interacting with Runx2

Differentiated ameloblasts secret enamel matrix proteins such as amelogenin, ameloblastin, and enamelin. Expression levels of these proteins are regulated by various factors. To find a new regulatory factor for ameloblast differentiation, we performed 2D‐PAGE analysis using mouse ameloblast lineage...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular physiology Vol. 233; no. 2; pp. 1512 - 1522
Main Authors Kim, Yuri, Hur, Sung‐Woong, Jeong, Byung‐Chul, Oh, Sin‐Hye, Hwang, Yun‐Chan, Kim, Sun‐Hun, Koh, Jeong‐Tae
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Differentiated ameloblasts secret enamel matrix proteins such as amelogenin, ameloblastin, and enamelin. Expression levels of these proteins are regulated by various factors. To find a new regulatory factor for ameloblast differentiation, we performed 2D‐PAGE analysis using mouse ameloblast lineage cell line (mALCs) cultured with mineralizing medium. Of identified proteins, family with sequence similarity 50 member A (Fam50a) was significantly increased during differentiation of mALCs. Fam50a protein was also highly expressed in secretory ameloblasts of mouse tooth germs. In mALCs cultures, forced expression of Fam50a up‐regulated the expression of enamel matrix protein genes such as amelogenin, ameloblastin, and enamelin. In addition, up‐regulation of Fam50a also increased ALP activity and mineralized nodule formation in a dose‐dependent manner. In contrast, knockdown of Fam50a decreased expression levels of enamel matrix protein genes, ALP activity, and mineralized nodule formation. By fluorescence microscopy, endogenous Fam50a protein was found to be localized to the nucleus of ameloblasts. In addition, Fam50a synergistically increased Ambn transactivation by Runx2. Moreover, Fam50a increased binding affinity of Runx2 to Ambn promoter by physically interacting with Runx2. Taken together, these results suggest Fam50a might be a new positive regulator of ameloblast differentiation. Fam50a protein was selected as a novel regulator of ameloblast differentiation through 2D‐PAGE analysis. Fam50a overexpression stimulated ameloblast differentiation via interacting with Runx2. Our result suggest that Fam50a might be a positive regulator of enamel formation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9541
1097-4652
DOI:10.1002/jcp.26038