Far‐red light inhibits lateral bud growth mainly through enhancing apical dominance independently of strigolactone synthesis in tomato

The ratio of red light to far‐red light (R:FR) is perceived by light receptors and consequently regulates plant architecture. Regulation of shoot branching by R:FR ratio involves plant hormones. However, the roles of strigolactone (SL), the key shoot branching hormone and the interplay of different...

Full description

Saved in:
Bibliographic Details
Published inPlant, cell and environment Vol. 47; no. 2; pp. 429 - 441
Main Authors Song, Xuewei, Gu, Xiaohua, Chen, Shangyu, Qi, Zhenyu, Yu, Jingquan, Zhou, Yanhong, Xia, Xiaojian
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The ratio of red light to far‐red light (R:FR) is perceived by light receptors and consequently regulates plant architecture. Regulation of shoot branching by R:FR ratio involves plant hormones. However, the roles of strigolactone (SL), the key shoot branching hormone and the interplay of different hormones in the light regulation of shoot branching in tomato (Solanum lycopersicum) are elusive. Here, we found that defects in SL synthesis genes CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7) and CCD8 in tomato resulted in more lateral bud growth but failed to reverse the FR inhibition of lateral bud growth, which was associated with increased auxin synthesis and decreased synthesis of cytokinin (CK) and brassinosteroid (BR). Treatment of auxin also inhibited shoot branching in ccd mutants. However, CK released the FR inhibition of lateral bud growth in ccd mutants, concomitant with the upregulation of BR synthesis genes. Furthermore, plants that overexpressed BR synthesis gene showed more lateral bud growth and the shoot branching was less sensitive to the low R:FR ratio. The results indicate that SL synthesis is dispensable for light regulation of shoot branching in tomato. Auxin mediates the response to R:FR ratio to regulate shoot branching by suppressing CK and BR synthesis. Summary Statement The role of strigolactone synthesis in and the contributions of other hormones to far‐red (FR) light regulation of shoot branching in tomato is elusive. Here, we found that FR light inhibits lateral bud growth mainly through enhancing apical dominance independently of strigolactone synthesis in tomato.
Bibliography:Xuewei Song and Xiaohua Gu contribute equally to this study.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0140-7791
1365-3040
DOI:10.1111/pce.14758