A pepper RING‐finger E3 ligase, CaFIRF1, negatively regulates the high‐salt stress response by modulating the stability of CaFAF1
Controlling protein stability or degradation via the ubiquitin‐26S proteasome system is a crucial mechanism in plant cellular responses to stress conditions. Previous studies have revealed that the pepper FANTASTIC FOUR‐like gene, CaFAF1, plays a positive role in salt tolerance and that, in this pro...
Saved in:
Published in | Plant, cell and environment Vol. 47; no. 4; pp. 1319 - 1333 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Controlling protein stability or degradation via the ubiquitin‐26S proteasome system is a crucial mechanism in plant cellular responses to stress conditions. Previous studies have revealed that the pepper FANTASTIC FOUR‐like gene, CaFAF1, plays a positive role in salt tolerance and that, in this process, CaFAF1 protein degradation is delayed. Here, we sought to isolate the E3 ligases potentially responsible for modulating CaFAF1 protein stability in response to salt stress. The pepper RING‐type E3 ligase CaFIRF1 (Capsicum
annuum
FAF1
Interacting
RING
Finger protein
1) was found to interact with and ubiquitinate CaFAF1, leading to the degradation of CaFAF1 proteins. In response to high‐salt treatments, CaFIRF1‐silenced pepper plants exhibited tolerant phenotypes. In contrast, co‐silencing of CaFAF1 and CaFIRF1 led to increased sensitivity to high‐salt treatments, revealing that CaFIRF1 functions upstream of CaFAF1. A cell‐free degradation analysis showed that high‐salt treatment suppressed CaFAF1 protein degradation via the 26S proteasome pathway, in which CaFIRF1 is functionally involved. In addition, an in vivo ubiquitination assay revealed that CaFIRF1‐mediated ubiquitination of CaFAF1 proteins was reduced by high‐salt treatment. Taken together, these findings suggest that the degradation of CaFAF1 mediated by CaFIRF1 has a critical role in pepper plant responses to high salinity.
Summary statement
We previously reported that pepper FANTASTIC FOUR‐like protein CaFAF1 functions as a positive modulator of high salt response. Building on this in the present study, we identified the RING type E3 ligase CaFIRF1 as an interactor of CaFAF1, which plays a negative role in response to high salt stress via regulation of CaFAF1 stability. |
---|---|
AbstractList | Controlling protein stability or degradation via the ubiquitin-26S proteasome system is a crucial mechanism in plant cellular responses to stress conditions. Previous studies have revealed that the pepper FANTASTIC FOUR-like gene, CaFAF1, plays a positive role in salt tolerance and that, in this process, CaFAF1 protein degradation is delayed. Here, we sought to isolate the E3 ligases potentially responsible for modulating CaFAF1 protein stability in response to salt stress. The pepper RING-type E3 ligase CaFIRF1 (Capsicum annuum FAF1 Interacting RING Finger protein 1) was found to interact with and ubiquitinate CaFAF1, leading to the degradation of CaFAF1 proteins. In response to high-salt treatments, CaFIRF1-silenced pepper plants exhibited tolerant phenotypes. In contrast, co-silencing of CaFAF1 and CaFIRF1 led to increased sensitivity to high-salt treatments, revealing that CaFIRF1 functions upstream of CaFAF1. A cell-free degradation analysis showed that high-salt treatment suppressed CaFAF1 protein degradation via the 26S proteasome pathway, in which CaFIRF1 is functionally involved. In addition, an in vivo ubiquitination assay revealed that CaFIRF1-mediated ubiquitination of CaFAF1 proteins was reduced by high-salt treatment. Taken together, these findings suggest that the degradation of CaFAF1 mediated by CaFIRF1 has a critical role in pepper plant responses to high salinity. Abstract Controlling protein stability or degradation via the ubiquitin‐26S proteasome system is a crucial mechanism in plant cellular responses to stress conditions. Previous studies have revealed that the pepper FANTASTIC FOUR‐like gene, CaFAF1 , plays a positive role in salt tolerance and that, in this process, CaFAF1 protein degradation is delayed. Here, we sought to isolate the E3 ligases potentially responsible for modulating CaFAF1 protein stability in response to salt stress. The pepper RING‐type E3 ligase CaFIRF1 ( C apsicum a nnuum F AF1 I nteracting R ING F inger protein 1 ) was found to interact with and ubiquitinate CaFAF1, leading to the degradation of CaFAF1 proteins. In response to high‐salt treatments, CaFIRF1 ‐silenced pepper plants exhibited tolerant phenotypes. In contrast, co‐silencing of CaFAF1 and CaFIRF1 led to increased sensitivity to high‐salt treatments, revealing that CaFIRF1 functions upstream of CaFAF1. A cell‐free degradation analysis showed that high‐salt treatment suppressed CaFAF1 protein degradation via the 26S proteasome pathway, in which CaFIRF1 is functionally involved. In addition, an in vivo ubiquitination assay revealed that CaFIRF1‐mediated ubiquitination of CaFAF1 proteins was reduced by high‐salt treatment. Taken together, these findings suggest that the degradation of CaFAF1 mediated by CaFIRF1 has a critical role in pepper plant responses to high salinity. Summary statement We previously reported that pepper FANTASTIC FOUR‐like protein CaFAF1 functions as a positive modulator of high salt response. Building on this in the present study, we identified the RING type E3 ligase CaFIRF1 as an interactor of CaFAF1, which plays a negative role in response to high salt stress via regulation of CaFAF1 stability. Controlling protein stability or degradation via the ubiquitin‐26S proteasome system is a crucial mechanism in plant cellular responses to stress conditions. Previous studies have revealed that the pepper FANTASTIC FOUR‐like gene, CaFAF1, plays a positive role in salt tolerance and that, in this process, CaFAF1 protein degradation is delayed. Here, we sought to isolate the E3 ligases potentially responsible for modulating CaFAF1 protein stability in response to salt stress. The pepper RING‐type E3 ligase CaFIRF1 (Capsicum annuum FAF1 Interacting RING Finger protein 1) was found to interact with and ubiquitinate CaFAF1, leading to the degradation of CaFAF1 proteins. In response to high‐salt treatments, CaFIRF1‐silenced pepper plants exhibited tolerant phenotypes. In contrast, co‐silencing of CaFAF1 and CaFIRF1 led to increased sensitivity to high‐salt treatments, revealing that CaFIRF1 functions upstream of CaFAF1. A cell‐free degradation analysis showed that high‐salt treatment suppressed CaFAF1 protein degradation via the 26S proteasome pathway, in which CaFIRF1 is functionally involved. In addition, an in vivo ubiquitination assay revealed that CaFIRF1‐mediated ubiquitination of CaFAF1 proteins was reduced by high‐salt treatment. Taken together, these findings suggest that the degradation of CaFAF1 mediated by CaFIRF1 has a critical role in pepper plant responses to high salinity. Summary statement We previously reported that pepper FANTASTIC FOUR‐like protein CaFAF1 functions as a positive modulator of high salt response. Building on this in the present study, we identified the RING type E3 ligase CaFIRF1 as an interactor of CaFAF1, which plays a negative role in response to high salt stress via regulation of CaFAF1 stability. Controlling protein stability or degradation via the ubiquitin-26S proteasome system is a crucial mechanism in plant cellular responses to stress conditions. Previous studies have revealed that the pepper FANTASTIC FOUR-like gene, CaFAF1, plays a positive role in salt tolerance and that, in this process, CaFAF1 protein degradation is delayed. Here, we sought to isolate the E3 ligases potentially responsible for modulating CaFAF1 protein stability in response to salt stress. The pepper RING-type E3 ligase CaFIRF1 (Capsicum annuum FAF1 Interacting RING Finger protein 1) was found to interact with and ubiquitinate CaFAF1, leading to the degradation of CaFAF1 proteins. In response to high-salt treatments, CaFIRF1-silenced pepper plants exhibited tolerant phenotypes. In contrast, co-silencing of CaFAF1 and CaFIRF1 led to increased sensitivity to high-salt treatments, revealing that CaFIRF1 functions upstream of CaFAF1. A cell-free degradation analysis showed that high-salt treatment suppressed CaFAF1 protein degradation via the 26S proteasome pathway, in which CaFIRF1 is functionally involved. In addition, an in vivo ubiquitination assay revealed that CaFIRF1-mediated ubiquitination of CaFAF1 proteins was reduced by high-salt treatment. Taken together, these findings suggest that the degradation of CaFAF1 mediated by CaFIRF1 has a critical role in pepper plant responses to high salinity. |
Author | Lim, Chae Woo Lee, Sung Chul Baek, Woonhee Bae, Yeongil |
Author_xml | – sequence: 1 givenname: Yeongil surname: Bae fullname: Bae, Yeongil organization: Chung‐Ang University – sequence: 2 givenname: Woonhee surname: Baek fullname: Baek, Woonhee organization: Chung‐Ang University – sequence: 3 givenname: Chae Woo surname: Lim fullname: Lim, Chae Woo email: protean@cau.ac.kr organization: Chung‐Ang University – sequence: 4 givenname: Sung Chul orcidid: 0000-0003-2725-0854 surname: Lee fullname: Lee, Sung Chul email: sclee1972@cau.ac.kr organization: Chung‐Ang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38221841$$D View this record in MEDLINE/PubMed |
BookMark | eNp10UFr2zAUB3AxWta022FfYAh22aBu9SzJlo8hJF2gtKO0ZyMrT46KYnuWveHbLrvvM-6TTGm6HQbVRUj83p8H_1Ny1LQNEvIO2AXEc9kZvAChQL0iM-CZTDgT7IjMGAiW5HkBJ-Q0hEfG4kdevCYnXKUpKAEz8nNOO-w67Ond-ubq949f1jV1fC059a7WAc_pQq_Wdys4pw3WenDf0E-0x3r0esBAhy3Srau3cTRoP9Aw9BhCBKFrm4C0muiu3exxDH7SYdCV826YaGv34fMVvCHHVvuAb5_vM_KwWt4vPifXt1frxfw6MVxylYAslECpdJpbXnGFAgqboilsYbLMohEyzY21wqZgGMuNBCErkxm22VQCBT8jHw-5Xd9-HTEM5c4Fg97rBtsxlGkBIpWZZBDph__oYzv2TdwuKi6YBFXkUX06KNO3IfRoy653O91PJbBy300Zuymfuon2_XPiWO1w80_-LSOCywP47jxOLyeVXxbLQ-QfcVWa2g |
CitedBy_id | crossref_primary_10_1111_pbi_14407 |
Cites_doi | 10.3390/cells11050890 10.1007/s11103-015-0294-1 10.1038/srep16961 10.1105/tpc.106.048488 10.3389/fpls.2020.565134 10.3389/fpls.2021.736421 10.1111/tpj.15032 10.1111/tpj.14046 10.21273/jashs.139.2.113 10.1111/j.1365-313X.2011.04607.x 10.1038/cdd.2011.16 10.1093/pcp/pcq156 10.1371/journal.pone.0203442 10.1007/s00425-017-2834-1 10.1007/s11816-018-0480-0 10.1038/s41576-021-00413-0 10.3389/fpls.2018.01771 10.22037/ijpr.2020.112621.13857 10.1111/jipb.13019 10.1016/j.envexpbot.2022.104887 10.1105/tpc.16.00364 10.1146/annurev.arplant.51.1.463 10.1104/pp.111.189738 10.1016/S0076-6879(07)28024-3 10.3390/ijms22094609 10.1016/j.molcel.2017.12.002 10.1104/pp.112.203422 10.1038/35066500 10.1016/S1360-1385(01)02080-5 10.1016/S0968-0004(98)01185-2 10.3389/fpls.2016.00806 10.3389/fpls.2014.00086 10.1186/gb-2002-3-6-reviews1017 10.1093/mp/sst005 10.1146/annurev.arplant.53.091401.143329 10.1111/tpj.16052 10.1016/j.bpj.2017.11.3787 10.1016/j.jmb.2006.08.017 10.1111/pce.13789 10.1104/pp.113.220103 10.3389/fpls.2021.756068 10.1111/tpj.14451 10.1111/j.1365-313x.2007.03052.x 10.1016/j.tplants.2021.07.009 10.1155/2014/360438 10.1093/jxb/ert326 10.1016/j.devcel.2020.10.012 10.1093/pcp/pcv103 10.1093/nar/gkx922 10.3390/ijms23042308 10.1111/tpj.14274 10.3389/fcell.2020.00039 10.1111/ppl.12459 10.3389/fpls.2018.01797 10.1073/pnas.2122495119 10.1016/j.bbamcr.2013.05.026 10.1111/tpj.15374 10.1007/s10265-011-0412-3 10.1104/pp.104.052423 10.1093/nar/gku1195 10.1371/journal.pone.0071078 10.1007/s11103-020-01084-x 10.1093/aobpla/plw055 10.3389/fpls.2014.00135 10.1002/wsbm.1185 10.3389/fpls.2013.00410 10.1093/jxb/erab138 |
ContentType | Journal Article |
Copyright | 2024 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. |
DBID | NPM AAYXX CITATION 7QP 7ST C1K SOI 7X8 |
DOI | 10.1111/pce.14818 |
DatabaseName | PubMed CrossRef Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Calcium & Calcified Tissue Abstracts CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Botany |
EISSN | 1365-3040 |
EndPage | 1333 |
ExternalDocumentID | 10_1111_pce_14818 38221841 PCE14818 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Research Foundation of Korea funderid: 2021R1A2C1007115; 2018R1A5A1023599 – fundername: National Research Foundation of Korea grantid: 2018R1A5A1023599 – fundername: National Research Foundation of Korea grantid: 2021R1A2C1007115 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 186 1OB 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AETEA AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BIYOS BMNLL BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FIJ FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XSW YNT ZZTAW ~02 ~IA ~KM ~WT NPM AAYXX CITATION 7QP 7ST C1K SOI 7X8 |
ID | FETCH-LOGICAL-c3538-15984e58a27f3b38e419f2ec9f9c66fec4527cff4f21c007c5145bc6c0ddb4e43 |
IEDL.DBID | DR2 |
ISSN | 0140-7791 |
IngestDate | Sat Aug 17 04:18:47 EDT 2024 Thu Oct 10 18:24:01 EDT 2024 Thu Sep 26 17:57:04 EDT 2024 Sat Nov 02 12:29:41 EDT 2024 Sat Aug 24 01:06:08 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | ABA ubiquitin-proteasome system ubiquitination protein degradation |
Language | English |
License | 2024 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3538-15984e58a27f3b38e419f2ec9f9c66fec4527cff4f21c007c5145bc6c0ddb4e43 |
Notes | Yeongil Bae and Woonhee Baek contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2725-0854 |
PMID | 38221841 |
PQID | 2934051897 |
PQPubID | 37957 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2914256501 proquest_journals_2934051897 crossref_primary_10_1111_pce_14818 pubmed_primary_38221841 wiley_primary_10_1111_pce_14818_PCE14818 |
PublicationCentury | 2000 |
PublicationDate | April 2024 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Plant, cell and environment |
PublicationTitleAlternate | Plant Cell Environ |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014; 139 2013; 4 2021; 22 2013; 65 2002; 53 2019; 98 2005; 137 2018; 247 2012; 160 2022; 23 2000; 51 2019; 18 2013; 162 2020; 11 2020; 55 2021; 72 2013; 8 2007; 428 2011; 18 2013; 6 2022; 27 2018; 46 2020; 8 2018; 9 2001; 410 2011; 124 2014; 5 2015; 87 2015; 43 2006; 362 2011; 67 2016; 158 2020; 43 2022; 199 2015; 56 2007; 19 2015; 5 2021; 105 2021; 107 2020; 104 2002; 3 2014; 2014 2007; 50 2022; 119 1998; 23 2019; 100 2022; 113 2014; 1843 2018; 69 2016; 7 2021; 12 2001; 6 2018; 114 2018; 96 2022; 11 2012; 158 2018; 12 2016; 28 2012; 4 2021; 63 2016; 8 2010; 51 2018; 13 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 5 issue: 1 year: 2015 article-title: Reference gene selection for normalization of RT‐qPCR gene expression data from leaves infected with pv. actinidiae publication-title: Scientific Reports – volume: 247 start-page: 875 year: 2018 end-page: 886 article-title: The microtubule‐associated RING finger protein 1 (OsMAR1) acts as a negative regulator for salt‐stress response through the regulation of OCPI2 ( chymotrypsin protease inhibitor 2) publication-title: Planta – volume: 43 start-page: D1036 issue: D1 year: 2015 end-page: D1041 article-title: The Sol Genomics Network (SGN)—From genotype to phenotype to breeding publication-title: Nucleic Acids Research – volume: 7 year: 2016 article-title: Role of ubiquitin‐mediated degradation system in plant biology publication-title: Frontiers in Plant Science – volume: 23 start-page: 104 issue: 2 year: 2022 end-page: 119 article-title: Abiotic stress responses in plants publication-title: Nature Reviews Genetics – volume: 5 year: 2014 article-title: The role of ubiquitin and the 26S proteasome in plant abiotic stress signaling publication-title: Frontiers in Plant Science – volume: 428 start-page: 419 year: 2007 end-page: 438 article-title: Mechanisms of high salinity tolerance in plants publication-title: Methods in Enzymology – volume: 3 start-page: reviews1017.1 issue: 6 year: 2002 article-title: Plants and sodium ions: keeping company with the enemy publication-title: Genome Biology – volume: 4 year: 2013 article-title: Sodium transport system in plant cells publication-title: Frontiers in Plant Science – volume: 46 start-page: D493 issue: D1 year: 2018 end-page: D496 article-title: 20 years of the SMART protein domain annotation resource publication-title: Nucleic Acids Research – volume: 12 issue: 2366 year: 2021 article-title: Pepper novel pseudo response regulator protein CaPRR2 modulates drought and high salt tolerance publication-title: Frontiers in Plant Science – volume: 28 start-page: 2178 issue: 9 year: 2016 end-page: 2196 article-title: Ubiquitin ligases RGLG1 and RGLG5 regulate abscisic acid signaling by controlling the turnover of phosphatase PP2CA publication-title: The Plant Cell – volume: 43 start-page: 1911 issue: 8 year: 2020 end-page: 1924 article-title: The pepper RING‐type E3 ligase, CaATIR1, positively regulates abscisic acid signalling and drought response by modulating the stability of CaATBZ1 publication-title: Plant, Cell & Environment – volume: 96 start-page: 452 issue: 2 year: 2018 end-page: 467 article-title: Roles of pepper bZIP protein CaDILZ1 and its interacting partner RING‐type E3 ligase CaDSR1 in modulation of drought tolerance publication-title: The Plant Journal – volume: 11 issue: 5 year: 2022 article-title: Plant E3 ligases and their role in abiotic stress response publication-title: Cells – volume: 12 start-page: 77 issue: 2 year: 2018 end-page: 92 article-title: Nitric oxide‐induced salt stress tolerance in plants: ROS metabolism, signaling, and molecular interactions publication-title: Plant Biotechnology Reports – volume: 362 start-page: 1120 issue: 5 year: 2006 end-page: 1131 article-title: Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta publication-title: Journal of Molecular Biology – volume: 56 start-page: 1808 issue: 9 year: 2015 end-page: 1819 article-title: RING type E3 ligase CaAIR1 in pepper acts in the regulation of ABA signaling and drought stress response publication-title: Plant and Cell Physiology – volume: 55 start-page: 529 issue: 5 year: 2020 end-page: 543 article-title: Thriving under stress: how plants balance growth and the stress response publication-title: Developmental Cell – volume: 65 start-page: 849 issue: 3 year: 2013 end-page: 858 article-title: Sodium in plants: perception, signalling, and regulation of sodium fluxes publication-title: Journal of Experimental Botany – volume: 199 year: 2022 article-title: Differential role of FANTASTIC FOUR‐like gene CaFAF1 on drought and salt stress responses publication-title: Environmental and Experimental Botany – volume: 1843 start-page: 47 issue: 1 year: 2014 end-page: 60 article-title: RING‐type E3 ligases: master manipulators of E2 ubiquitin‐conjugating enzymes and ubiquitination publication-title: Biochimica et Biophysica Acta (BBA)‐Molecular Cell Research – volume: 51 start-page: 463 year: 2000 end-page: 499 article-title: Plant cellular and molecular responses to high salinity publication-title: Annual Review of Plant Physiology and Plant Molecular Biology – volume: 23 start-page: 89 issue: 3 year: 1998 end-page: 91 article-title: Protein methylation: a signal event in post‐translational modification publication-title: Trends in Biochemical Sciences – volume: 104 start-page: 1712 issue: 6 year: 2020 end-page: 1723 article-title: Arabidopsis RING‐type E3 ubiquitin ligase XBAT35. 2 promotes proteasome‐dependent degradation of ACD11 to attenuate abiotic stress tolerance publication-title: The Plant Journal – volume: 6 start-page: 463 issue: 10 year: 2001 end-page: 470 article-title: Ubiquitylation in plants: a post‐genomic look at a post‐translational modification publication-title: Trends in Plant Science – volume: 4 start-page: 565 issue: 6 year: 2012 end-page: 583 article-title: Post‐translational modification: nature's escape from genetic imprisonment and the basis for dynamic information encoding publication-title: WIREs Systems Biology and Medicine – volume: 13 issue: 8 year: 2018 article-title: Repertoire of plant RING E3 ubiquitin ligases revisited: new groups counting gene families and single genes publication-title: PLoS ONE – volume: 12 year: 2021 article-title: Differential functions of pepper stress‐associated proteins in response to abiotic stresses publication-title: Frontiers in Plant Science – volume: 11 issue: 1483 year: 2020 article-title: Differential contribution of P5CS isoforms to stress tolerance in publication-title: Frontiers in Plant Science – volume: 107 start-page: 1148 issue: 4 year: 2021 end-page: 1165 article-title: Pepper ubiquitin‐specific protease, CaUBP12, positively modulates dehydration resistance by enhancing CaSnRK2.6 stability publication-title: The Plant Journal – volume: 51 start-page: 1821 issue: 11 year: 2010 end-page: 1839 article-title: Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport publication-title: Plant and Cell Physiology – volume: 22 issue: 9 year: 2021 article-title: Regulation of plant responses to salt stress publication-title: International Journal of Molecular Sciences – volume: 2014 start-page: 1 year: 2014 end-page: 31 article-title: Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4‐hydroxy‐2‐nonenal publication-title: Oxidative Medicine and Cellular Longevity – volume: 53 start-page: 247 issue: 1 year: 2002 end-page: 273 article-title: Salt and drought stress signal transduction in plants publication-title: Annual Review of Plant Biology – volume: 87 start-page: 441 issue: 4–5 year: 2015 end-page: 458 article-title: Knock‐down of stress inducible OsSRFP1 encoding an E3 ubiquitin ligase with transcriptional activation activity confers abiotic stress tolerance through enhancing antioxidant protection in rice publication-title: Plant Molecular Biology – volume: 9 issue: 1771 year: 2018 article-title: Abiotic stresses: general defenses of land plants and chances for engineering multistress tolerance publication-title: Frontiers in Plant Science – volume: 8 year: 2016 article-title: Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars publication-title: AoB Plants – volume: 23 issue: 4 year: 2022 article-title: Roles of E3 ubiquitin ligases in plant responses to abiotic stresses publication-title: International Journal of Molecular Sciences – volume: 18 start-page: 1393 issue: 9 year: 2011 end-page: 1402 article-title: Ubiquitination of E3 ligases: self‐regulation of the ubiquitin system via proteolytic and non‐proteolytic mechanisms publication-title: Cell Death and Differentiation – volume: 124 start-page: 509 issue: 4 year: 2011 end-page: 525 article-title: ABA‐mediated transcriptional regulation in response to osmotic stress in plants publication-title: Journal of Plant Research – volume: 5 year: 2014 article-title: Response of plants to water stress publication-title: Frontiers in Plant Science – volume: 410 start-page: 327 issue: 6826 year: 2001 end-page: 330 article-title: Guard cell abscisic acid signalling and engineering drought hardiness in plants publication-title: Nature – volume: 139 start-page: 113 issue: 2 year: 2014 end-page: 122 article-title: Selection of suitable reference genes for quantitative real‐time polymerase chain reaction in during flowering stages and under different abiotic stress conditions publication-title: Journal of the American Society for Horticultural Science – volume: 63 start-page: 484 issue: 3 year: 2021 end-page: 493 article-title: RING finger protein RGLG1 and RGLG2 negatively modulate MAPKKK18 mediated drought stress tolerance in publication-title: Journal of Integrative Plant Biology – volume: 6 start-page: 1388 issue: 5 year: 2013 end-page: 1404 article-title: Plant E3 ligases: flexible enzymes in a sessile world publication-title: Molecular Plant – volume: 72 start-page: 4520 year: 2021 end-page: 4534 article-title: Pepper E3 ligase CaAIRE1 promotes ABA sensitivity and drought tolerance by degradation of protein phosphatase CaAITP1 publication-title: Journal of Experimental Botany – volume: 113 start-page: 357 year: 2022 end-page: 374 article-title: Pepper stress‐associated protein 14 is a substrate of CaSnRK2.6 that positively modulates abscisic acid‐dependent osmotic stress responses publication-title: The Plant Journal – volume: 158 start-page: 363 issue: 1 year: 2012 end-page: 375 article-title: Arabidopsis RGLG2, functioning as a RING E3 ligase, interacts with AtERF53 and negatively regulates the plant drought stress response publication-title: Plant Physiology – volume: 18 start-page: 13 issue: Suppl1 year: 2019 end-page: 30 article-title: Osmolyte‐induced folding and stability of proteins: concepts and characterization publication-title: Iranian Journal of Pharmaceutical Research: IJPR – volume: 98 start-page: 813 issue: 5 year: 2019 end-page: 825 article-title: ABA inhibits myristoylation and induces shuttling of the RGLG 1 E3 ligase to promote nuclear degradation of PP 2 CA publication-title: The Plant Journal – volume: 27 start-page: 39 issue: 1 year: 2022 end-page: 55 article-title: Proline metabolism as regulatory hub publication-title: Trends in Plant Science – volume: 19 start-page: 1912 issue: 6 year: 2007 end-page: 1929 article-title: SDIR1 is a RING finger E3 ligase that positively regulates stress‐responsive abscisic acid signaling in publication-title: The Plant Cell – volume: 8 issue: 8 year: 2013 article-title: The E3 ligase AtRDUF1 positively regulates salt stress responses in publication-title: PLoS ONE – volume: 137 start-page: 13 issue: 1 year: 2005 end-page: 30 article-title: Functional analysis of the RING‐type ubiquitin ligase family of publication-title: Plant Physiology – volume: 119 issue: 30 year: 2022 article-title: Elevated intracellular Na+ and osmolarity stimulate catalytic activity of the ubiquitin ligase Nedd4‐2 publication-title: Proceedings of the National Academy of Sciences – volume: 114 start-page: 507 issue: 3 year: 2018 end-page: 515 article-title: Dynamics of posttranslational modification systems: recent progress and future directions publication-title: Biophysical Journal – volume: 100 start-page: 399 issue: 2 year: 2019 end-page: 410 article-title: Roles of pepper bZIP transcription factor CaATBZ1 and its interacting partner RING‐type E3 ligase CaASRF1 in modulation of ABA signalling and drought tolerance publication-title: The Plant Journal – volume: 69 start-page: 100 issue: 1 year: 2018 end-page: 112 article-title: Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response publication-title: Molecular Cell – volume: 67 start-page: 542 issue: 3 year: 2011 end-page: 553 article-title: Quantitative analysis of dynamic protein–protein interactions in planta by a floated‐leaf luciferase complementation imaging (FLuCI) assay using binary gateway vectors publication-title: The Plant Journal – volume: 50 start-page: 347 issue: 2 year: 2007 end-page: 363 article-title: The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV‐B light, drought and cold stress responses publication-title: The Plant Journal – volume: 162 start-page: 1733 issue: 3 year: 2013 end-page: 1749 article-title: The RING E3 ubiquitin ligase AtAIRP3/LOG2 participates in positive regulation of high‐salt and drought stress responses publication-title: Plant Physiology – volume: 9 year: 2018 article-title: OsDIRP1, a putative RING E3 ligase, plays an opposite role in drought and cold stress responses as a negative and positive factor, respectively, in rice ( L.) publication-title: Frontiers in Plant Science – volume: 158 start-page: 168 issue: 2 year: 2016 end-page: 179 article-title: Molecular dissection of salt‐induced RING finger protein 1 (OsSIRP1): possible involvement in the sensitivity response to salinity stress publication-title: Physiologia Plantarum – volume: 105 start-page: 231 issue: 3 year: 2021 end-page: 245 article-title: E3 ligase, the salt‐induced RING finger protein 4 (OsSIRP4), negatively regulates salt stress responses via degradation of the OsPEX11‐1 protein publication-title: Plant Molecular Biology – volume: 160 start-page: 808 issue: 2 year: 2012 end-page: 822 article-title: Two novel RING‐type ubiquitin ligases, RGLG3 and RGLG4, are essential for jasmonate‐mediated responses in publication-title: Plant Physiology – volume: 8 year: 2020 article-title: How to inactivate human ubiquitin E3 ligases by mutation publication-title: Frontiers in Cell and Developmental Biology – ident: e_1_2_8_3_1 doi: 10.3390/cells11050890 – ident: e_1_2_8_17_1 doi: 10.1007/s11103-015-0294-1 – ident: e_1_2_8_49_1 doi: 10.1038/srep16961 – ident: e_1_2_8_66_1 doi: 10.1105/tpc.106.048488 – ident: e_1_2_8_20_1 doi: 10.3389/fpls.2020.565134 – ident: e_1_2_8_40_1 doi: 10.3389/fpls.2021.736421 – ident: e_1_2_8_36_1 doi: 10.1111/tpj.15032 – ident: e_1_2_8_38_1 doi: 10.1111/tpj.14046 – ident: e_1_2_8_59_1 doi: 10.21273/jashs.139.2.113 – ident: e_1_2_8_22_1 doi: 10.1111/j.1365-313X.2011.04607.x – ident: e_1_2_8_11_1 doi: 10.1038/cdd.2011.16 – ident: e_1_2_8_56_1 doi: 10.1093/pcp/pcq156 – ident: e_1_2_8_28_1 doi: 10.1371/journal.pone.0203442 – ident: e_1_2_8_47_1 doi: 10.1007/s00425-017-2834-1 – ident: e_1_2_8_24_1 doi: 10.1007/s11816-018-0480-0 – ident: e_1_2_8_64_1 doi: 10.1038/s41576-021-00413-0 – ident: e_1_2_8_26_1 doi: 10.3389/fpls.2018.01771 – ident: e_1_2_8_43_1 doi: 10.22037/ijpr.2020.112621.13857 – ident: e_1_2_8_62_1 doi: 10.1111/jipb.13019 – ident: e_1_2_8_37_1 doi: 10.1016/j.envexpbot.2022.104887 – ident: e_1_2_8_60_1 doi: 10.1105/tpc.16.00364 – ident: e_1_2_8_25_1 doi: 10.1146/annurev.arplant.51.1.463 – ident: e_1_2_8_12_1 doi: 10.1104/pp.111.189738 – ident: e_1_2_8_55_1 doi: 10.1016/S0076-6879(07)28024-3 – ident: e_1_2_8_67_1 doi: 10.3390/ijms22094609 – ident: e_1_2_8_57_1 doi: 10.1016/j.molcel.2017.12.002 – ident: e_1_2_8_65_1 doi: 10.1104/pp.112.203422 – ident: e_1_2_8_51_1 doi: 10.1038/35066500 – ident: e_1_2_8_6_1 doi: 10.1016/S1360-1385(01)02080-5 – ident: e_1_2_8_2_1 doi: 10.1016/S0968-0004(98)01185-2 – ident: e_1_2_8_52_1 doi: 10.3389/fpls.2016.00806 – ident: e_1_2_8_44_1 doi: 10.3389/fpls.2014.00086 – ident: e_1_2_8_45_1 doi: 10.1186/gb-2002-3-6-reviews1017 – ident: e_1_2_8_13_1 doi: 10.1093/mp/sst005 – ident: e_1_2_8_68_1 doi: 10.1146/annurev.arplant.53.091401.143329 – ident: e_1_2_8_9_1 doi: 10.1111/tpj.16052 – ident: e_1_2_8_15_1 doi: 10.1016/j.bpj.2017.11.3787 – ident: e_1_2_8_14_1 doi: 10.1016/j.jmb.2006.08.017 – ident: e_1_2_8_30_1 doi: 10.1111/pce.13789 – ident: e_1_2_8_33_1 doi: 10.1104/pp.113.220103 – ident: e_1_2_8_8_1 doi: 10.3389/fpls.2021.756068 – ident: e_1_2_8_29_1 doi: 10.1111/tpj.14451 – ident: e_1_2_8_31_1 doi: 10.1111/j.1365-313x.2007.03052.x – ident: e_1_2_8_4_1 doi: 10.1016/j.tplants.2021.07.009 – ident: e_1_2_8_5_1 doi: 10.1155/2014/360438 – ident: e_1_2_8_41_1 doi: 10.1093/jxb/ert326 – ident: e_1_2_8_63_1 doi: 10.1016/j.devcel.2020.10.012 – ident: e_1_2_8_46_1 doi: 10.1093/pcp/pcv103 – ident: e_1_2_8_34_1 doi: 10.1093/nar/gkx922 – ident: e_1_2_8_58_1 doi: 10.3390/ijms23042308 – ident: e_1_2_8_10_1 doi: 10.1111/tpj.14274 – ident: e_1_2_8_21_1 doi: 10.3389/fcell.2020.00039 – ident: e_1_2_8_27_1 doi: 10.1111/ppl.12459 – ident: e_1_2_8_16_1 doi: 10.3389/fpls.2018.01797 – ident: e_1_2_8_48_1 doi: 10.1073/pnas.2122495119 – ident: e_1_2_8_42_1 doi: 10.1016/j.bbamcr.2013.05.026 – ident: e_1_2_8_39_1 doi: 10.1111/tpj.15374 – ident: e_1_2_8_19_1 doi: 10.1007/s10265-011-0412-3 – ident: e_1_2_8_54_1 doi: 10.1104/pp.104.052423 – ident: e_1_2_8_18_1 doi: 10.1093/nar/gku1195 – ident: e_1_2_8_35_1 doi: 10.1371/journal.pone.0071078 – ident: e_1_2_8_32_1 doi: 10.1007/s11103-020-01084-x – ident: e_1_2_8_23_1 doi: 10.1093/aobpla/plw055 – ident: e_1_2_8_53_1 doi: 10.3389/fpls.2014.00135 – ident: e_1_2_8_50_1 doi: 10.1002/wsbm.1185 – ident: e_1_2_8_61_1 doi: 10.3389/fpls.2013.00410 – ident: e_1_2_8_7_1 doi: 10.1093/jxb/erab138 |
SSID | ssj0001479 |
Score | 2.4897072 |
Snippet | Controlling protein stability or degradation via the ubiquitin‐26S proteasome system is a crucial mechanism in plant cellular responses to stress conditions.... Controlling protein stability or degradation via the ubiquitin-26S proteasome system is a crucial mechanism in plant cellular responses to stress conditions.... Abstract Controlling protein stability or degradation via the ubiquitin‐26S proteasome system is a crucial mechanism in plant cellular responses to stress... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1319 |
SubjectTerms | ABA Abiotic stress Biodegradation Capsicum annuum Degradation Peppers Phenotypes Proteasome 26S Proteasomes protein degradation Proteins RING finger proteins Salinity tolerance Salt tolerance Ubiquitin-protein ligase Ubiquitination ubiquitin‐proteasome system Vegetables |
Title | A pepper RING‐finger E3 ligase, CaFIRF1, negatively regulates the high‐salt stress response by modulating the stability of CaFAF1 |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14818 https://www.ncbi.nlm.nih.gov/pubmed/38221841 https://www.proquest.com/docview/2934051897 https://search.proquest.com/docview/2914256501 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VFUhceJTXQosM4sChW61j52Fx2i4bFSQQqqjUA1IUO-MV6jaJ9nEIJy7c-Y38Esb2ZqEgJMQtUuw4sT0zn53P3wA8N1UpojSOhqPIaFqgKDKpipxhUlFsRnJ_Et3Z4bfvkpMz-eY8Pt-Bl_1ZmKAPsd1wc5bh_bUz8FIvfzHy1iCZOcUb8r9cpI7O9er0p3QUl0Fnz9EX01TxjaqQY_Fsa16NRX8AzKt41Qec_BZ87F818EwujtYrfWQ-_6bi-J_fchtuboAoG4eZcwd2sN6D6yE1ZbcH144bgo3dXfg6Zi22LS6Y4018__LN-o1ANhVs_mlGMfCQTcr89WnOD1mNM68jPu_YIuS4xyUjhMmcKDJVXZbzFQunU6iAJ-ci0x27bCqfRaye-dIEWD1lt2ONdQ8f5_wenOXTD5OT4SZ3w9AI50MJJWUS46yMUiu0yFByZSM0yiqTJBaNjKPUWCttxA3hFEPALdYmMaOq0hKluA-7dVPjQ2A2tro0imclOmmZkaqMUC7ZUUaVVcYH8KwfxaINEh1Fv7Shji18xw5gvx_fYmOly4KgDuFVnql0AE-3t8m-3E-TssZm7cpwcmuEY6mdB2FebFsRhK5ohUx3XvjR_XvzxfvJ1F88-veij-FGRAgq0IT2YXe1WOMBIaCVfuKn-g_ujgC9 |
link.rule.ids | 315,783,787,1378,27937,27938,46307,46731 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VAoILjwLtQgGDOHDoVus4L0tclmWjLbQVqlqplypKnPEKdZtE-ziEUy-98xv5JYztzUJBSIhbpNhxYvub-eyMvwF4o4pMeFHgdXueymmBIglSBRnDsCDfjGT-fDRnhw8Ow9GJ__E0OF2Dd-1ZGKcPsdpwM8iw9toA3GxI_4LyWiHhnBzODbhJcBcGlh-OfopHcd8p7ZkAxiiSfKkrZOJ4VlWve6M_KOZ1xmpdTnIfztqXdZEm57uLeb6rvv6m4_i_X_MA7i25KOu7yfMQ1rDcgNsuO2WzAbfeV8Qcm0dw1Wc11jVOmQmd-H75Tdu9QDYUbPJlTG5whw2yZO8o4TusxLGVEp80bOrS3OOMEclkRheZqs6yyZy5AypUwMbnIssbdlEVNpFYObalibPaqN2GVdo8vJ_wx3CSDI8Ho-4yfUNXCWNGiSjFPgZx5kVa5CJGn0vtoZJaqjDUqPzAi5TWvva4IqqiiLsFuQpVryhyH33xBNbLqsQtYDrQeaYkjzM06jI9WSghTb6jmCrLmHfgdTuMae1UOtJ2dUMdm9qO7cB2O8DpEqizlNgOUVYey6gDr1a3CWLmv0lWYrUwZThZNqKy1M6mmxirVgQRLFok0523dnj_3nz6eTC0F0__vehLuDM6PthP9_cOPz2Dux4RKhc1tA3r8-kCnxMhmucv7Lz_AepnBNY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VFhCXFgqU7QMM4sChW60T52Fx2m43anlUVUWlHipFiTNeoS5JtI9DOHHhzm_klzC2NwsFISFukTKOE3sen53xNwAvVZH5XhR43Z6nclqgSDKpgpxhWFBsRnJ_As3Z4fen4fGFeHMZXK7A6_YsjOOHWG64Gcuw_toYeF3oX4y8VkhmTvHmFqyJkFTVIKLzn9xRXDiiPZO_GEWSL2iFTBrPsunNYPQHwrwJWG3ESTbgqn1Xl2hyfTCf5Qfq8280jv_5MfdhfYFEWd-pzgNYwXIT7rjalM0m3D6sCDc2D-Frn9VY1zhhJnHi-5dv2u4EsqHPxh9HFAT32SBLTs4Tvs9KHFki8XHDJq7IPU4ZQUxmWJGp6TQbz5g7nkICNjsXWd6wT1Vhy4iVIytNiNXm7Das0ubh_YQ_gotk-GFw3F0Ub-gq3zhRgkmxwCDOvEj7uR-j4FJ7qKSWKgw1KhF4kdJaaI8rAiqKkFuQq1D1iiIXKPzHsFpWJT4BpgOdZ0ryOEPDLdOThfKlqXYUU2MZ8w68aGcxrR1HR9qubWhgUzuwHdht5zddmOk0JaxDgJXHMurA8-VtMjDz1yQrsZobGU5-jYAs9bPl9GLZi0_wipbIdOeVnd2_d5-eDYb2YvvfRZ_B3bOjJH13cvp2B-55hKZcytAurM4mc9wjNDTLn1qt_wHcAgOF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+pepper+RING-finger+E3+ligase%2C+CaFIRF1%2C+negatively+regulates+the+high-salt+stress+response+by+modulating+the+stability+of+CaFAF1&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Bae%2C+Yeongil&rft.au=Baek%2C+Woonhee&rft.au=Lim%2C+Chae+Woo&rft.au=Lee%2C+Sung+Chul&rft.date=2024-04-01&rft.eissn=1365-3040&rft.volume=47&rft.issue=4&rft.spage=1319&rft.epage=1333&rft_id=info:doi/10.1111%2Fpce.14818&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon |