A pepper RING‐finger E3 ligase, CaFIRF1, negatively regulates the high‐salt stress response by modulating the stability of CaFAF1

Controlling protein stability or degradation via the ubiquitin‐26S proteasome system is a crucial mechanism in plant cellular responses to stress conditions. Previous studies have revealed that the pepper FANTASTIC FOUR‐like gene, CaFAF1, plays a positive role in salt tolerance and that, in this pro...

Full description

Saved in:
Bibliographic Details
Published inPlant, cell and environment Vol. 47; no. 4; pp. 1319 - 1333
Main Authors Bae, Yeongil, Baek, Woonhee, Lim, Chae Woo, Lee, Sung Chul
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Controlling protein stability or degradation via the ubiquitin‐26S proteasome system is a crucial mechanism in plant cellular responses to stress conditions. Previous studies have revealed that the pepper FANTASTIC FOUR‐like gene, CaFAF1, plays a positive role in salt tolerance and that, in this process, CaFAF1 protein degradation is delayed. Here, we sought to isolate the E3 ligases potentially responsible for modulating CaFAF1 protein stability in response to salt stress. The pepper RING‐type E3 ligase CaFIRF1 (Capsicum  annuum  FAF1  Interacting  RING  Finger protein  1) was found to interact with and ubiquitinate CaFAF1, leading to the degradation of CaFAF1 proteins. In response to high‐salt treatments, CaFIRF1‐silenced pepper plants exhibited tolerant phenotypes. In contrast, co‐silencing of CaFAF1 and CaFIRF1 led to increased sensitivity to high‐salt treatments, revealing that CaFIRF1 functions upstream of CaFAF1. A cell‐free degradation analysis showed that high‐salt treatment suppressed CaFAF1 protein degradation via the 26S proteasome pathway, in which CaFIRF1 is functionally involved. In addition, an in vivo ubiquitination assay revealed that CaFIRF1‐mediated ubiquitination of CaFAF1 proteins was reduced by high‐salt treatment. Taken together, these findings suggest that the degradation of CaFAF1 mediated by CaFIRF1 has a critical role in pepper plant responses to high salinity. Summary statement We previously reported that pepper FANTASTIC FOUR‐like protein CaFAF1 functions as a positive modulator of high salt response. Building on this in the present study, we identified the RING type E3 ligase CaFIRF1 as an interactor of CaFAF1, which plays a negative role in response to high salt stress via regulation of CaFAF1 stability.
AbstractList Controlling protein stability or degradation via the ubiquitin-26S proteasome system is a crucial mechanism in plant cellular responses to stress conditions. Previous studies have revealed that the pepper FANTASTIC FOUR-like gene, CaFAF1, plays a positive role in salt tolerance and that, in this process, CaFAF1 protein degradation is delayed. Here, we sought to isolate the E3 ligases potentially responsible for modulating CaFAF1 protein stability in response to salt stress. The pepper RING-type E3 ligase CaFIRF1 (Capsicum annuum FAF1 Interacting RING Finger protein 1) was found to interact with and ubiquitinate CaFAF1, leading to the degradation of CaFAF1 proteins. In response to high-salt treatments, CaFIRF1-silenced pepper plants exhibited tolerant phenotypes. In contrast, co-silencing of CaFAF1 and CaFIRF1 led to increased sensitivity to high-salt treatments, revealing that CaFIRF1 functions upstream of CaFAF1. A cell-free degradation analysis showed that high-salt treatment suppressed CaFAF1 protein degradation via the 26S proteasome pathway, in which CaFIRF1 is functionally involved. In addition, an in vivo ubiquitination assay revealed that CaFIRF1-mediated ubiquitination of CaFAF1 proteins was reduced by high-salt treatment. Taken together, these findings suggest that the degradation of CaFAF1 mediated by CaFIRF1 has a critical role in pepper plant responses to high salinity.
Abstract Controlling protein stability or degradation via the ubiquitin‐26S proteasome system is a crucial mechanism in plant cellular responses to stress conditions. Previous studies have revealed that the pepper FANTASTIC FOUR‐like gene, CaFAF1 , plays a positive role in salt tolerance and that, in this process, CaFAF1 protein degradation is delayed. Here, we sought to isolate the E3 ligases potentially responsible for modulating CaFAF1 protein stability in response to salt stress. The pepper RING‐type E3 ligase CaFIRF1 ( C apsicum  a nnuum   F AF1  I nteracting  R ING  F inger protein  1 ) was found to interact with and ubiquitinate CaFAF1, leading to the degradation of CaFAF1 proteins. In response to high‐salt treatments, CaFIRF1 ‐silenced pepper plants exhibited tolerant phenotypes. In contrast, co‐silencing of CaFAF1 and CaFIRF1 led to increased sensitivity to high‐salt treatments, revealing that CaFIRF1 functions upstream of CaFAF1. A cell‐free degradation analysis showed that high‐salt treatment suppressed CaFAF1 protein degradation via the 26S proteasome pathway, in which CaFIRF1 is functionally involved. In addition, an in vivo ubiquitination assay revealed that CaFIRF1‐mediated ubiquitination of CaFAF1 proteins was reduced by high‐salt treatment. Taken together, these findings suggest that the degradation of CaFAF1 mediated by CaFIRF1 has a critical role in pepper plant responses to high salinity. Summary statement We previously reported that pepper FANTASTIC FOUR‐like protein CaFAF1 functions as a positive modulator of high salt response. Building on this in the present study, we identified the RING type E3 ligase CaFIRF1 as an interactor of CaFAF1, which plays a negative role in response to high salt stress via regulation of CaFAF1 stability.
Controlling protein stability or degradation via the ubiquitin‐26S proteasome system is a crucial mechanism in plant cellular responses to stress conditions. Previous studies have revealed that the pepper FANTASTIC FOUR‐like gene, CaFAF1, plays a positive role in salt tolerance and that, in this process, CaFAF1 protein degradation is delayed. Here, we sought to isolate the E3 ligases potentially responsible for modulating CaFAF1 protein stability in response to salt stress. The pepper RING‐type E3 ligase CaFIRF1 (Capsicum  annuum  FAF1  Interacting  RING  Finger protein  1) was found to interact with and ubiquitinate CaFAF1, leading to the degradation of CaFAF1 proteins. In response to high‐salt treatments, CaFIRF1‐silenced pepper plants exhibited tolerant phenotypes. In contrast, co‐silencing of CaFAF1 and CaFIRF1 led to increased sensitivity to high‐salt treatments, revealing that CaFIRF1 functions upstream of CaFAF1. A cell‐free degradation analysis showed that high‐salt treatment suppressed CaFAF1 protein degradation via the 26S proteasome pathway, in which CaFIRF1 is functionally involved. In addition, an in vivo ubiquitination assay revealed that CaFIRF1‐mediated ubiquitination of CaFAF1 proteins was reduced by high‐salt treatment. Taken together, these findings suggest that the degradation of CaFAF1 mediated by CaFIRF1 has a critical role in pepper plant responses to high salinity. Summary statement We previously reported that pepper FANTASTIC FOUR‐like protein CaFAF1 functions as a positive modulator of high salt response. Building on this in the present study, we identified the RING type E3 ligase CaFIRF1 as an interactor of CaFAF1, which plays a negative role in response to high salt stress via regulation of CaFAF1 stability.
Controlling protein stability or degradation via the ubiquitin-26S proteasome system is a crucial mechanism in plant cellular responses to stress conditions. Previous studies have revealed that the pepper FANTASTIC FOUR-like gene, CaFAF1, plays a positive role in salt tolerance and that, in this process, CaFAF1 protein degradation is delayed. Here, we sought to isolate the E3 ligases potentially responsible for modulating CaFAF1 protein stability in response to salt stress. The pepper RING-type E3 ligase CaFIRF1 (Capsicum  annuum  FAF1  Interacting  RING  Finger protein  1) was found to interact with and ubiquitinate CaFAF1, leading to the degradation of CaFAF1 proteins. In response to high-salt treatments, CaFIRF1-silenced pepper plants exhibited tolerant phenotypes. In contrast, co-silencing of CaFAF1 and CaFIRF1 led to increased sensitivity to high-salt treatments, revealing that CaFIRF1 functions upstream of CaFAF1. A cell-free degradation analysis showed that high-salt treatment suppressed CaFAF1 protein degradation via the 26S proteasome pathway, in which CaFIRF1 is functionally involved. In addition, an in vivo ubiquitination assay revealed that CaFIRF1-mediated ubiquitination of CaFAF1 proteins was reduced by high-salt treatment. Taken together, these findings suggest that the degradation of CaFAF1 mediated by CaFIRF1 has a critical role in pepper plant responses to high salinity.
Author Lim, Chae Woo
Lee, Sung Chul
Baek, Woonhee
Bae, Yeongil
Author_xml – sequence: 1
  givenname: Yeongil
  surname: Bae
  fullname: Bae, Yeongil
  organization: Chung‐Ang University
– sequence: 2
  givenname: Woonhee
  surname: Baek
  fullname: Baek, Woonhee
  organization: Chung‐Ang University
– sequence: 3
  givenname: Chae Woo
  surname: Lim
  fullname: Lim, Chae Woo
  email: protean@cau.ac.kr
  organization: Chung‐Ang University
– sequence: 4
  givenname: Sung Chul
  orcidid: 0000-0003-2725-0854
  surname: Lee
  fullname: Lee, Sung Chul
  email: sclee1972@cau.ac.kr
  organization: Chung‐Ang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38221841$$D View this record in MEDLINE/PubMed
BookMark eNp10UFr2zAUB3AxWta022FfYAh22aBu9SzJlo8hJF2gtKO0ZyMrT46KYnuWveHbLrvvM-6TTGm6HQbVRUj83p8H_1Ny1LQNEvIO2AXEc9kZvAChQL0iM-CZTDgT7IjMGAiW5HkBJ-Q0hEfG4kdevCYnXKUpKAEz8nNOO-w67Ond-ubq949f1jV1fC059a7WAc_pQq_Wdys4pw3WenDf0E-0x3r0esBAhy3Srau3cTRoP9Aw9BhCBKFrm4C0muiu3exxDH7SYdCV826YaGv34fMVvCHHVvuAb5_vM_KwWt4vPifXt1frxfw6MVxylYAslECpdJpbXnGFAgqboilsYbLMohEyzY21wqZgGMuNBCErkxm22VQCBT8jHw-5Xd9-HTEM5c4Fg97rBtsxlGkBIpWZZBDph__oYzv2TdwuKi6YBFXkUX06KNO3IfRoy653O91PJbBy300Zuymfuon2_XPiWO1w80_-LSOCywP47jxOLyeVXxbLQ-QfcVWa2g
CitedBy_id crossref_primary_10_1111_pbi_14407
Cites_doi 10.3390/cells11050890
10.1007/s11103-015-0294-1
10.1038/srep16961
10.1105/tpc.106.048488
10.3389/fpls.2020.565134
10.3389/fpls.2021.736421
10.1111/tpj.15032
10.1111/tpj.14046
10.21273/jashs.139.2.113
10.1111/j.1365-313X.2011.04607.x
10.1038/cdd.2011.16
10.1093/pcp/pcq156
10.1371/journal.pone.0203442
10.1007/s00425-017-2834-1
10.1007/s11816-018-0480-0
10.1038/s41576-021-00413-0
10.3389/fpls.2018.01771
10.22037/ijpr.2020.112621.13857
10.1111/jipb.13019
10.1016/j.envexpbot.2022.104887
10.1105/tpc.16.00364
10.1146/annurev.arplant.51.1.463
10.1104/pp.111.189738
10.1016/S0076-6879(07)28024-3
10.3390/ijms22094609
10.1016/j.molcel.2017.12.002
10.1104/pp.112.203422
10.1038/35066500
10.1016/S1360-1385(01)02080-5
10.1016/S0968-0004(98)01185-2
10.3389/fpls.2016.00806
10.3389/fpls.2014.00086
10.1186/gb-2002-3-6-reviews1017
10.1093/mp/sst005
10.1146/annurev.arplant.53.091401.143329
10.1111/tpj.16052
10.1016/j.bpj.2017.11.3787
10.1016/j.jmb.2006.08.017
10.1111/pce.13789
10.1104/pp.113.220103
10.3389/fpls.2021.756068
10.1111/tpj.14451
10.1111/j.1365-313x.2007.03052.x
10.1016/j.tplants.2021.07.009
10.1155/2014/360438
10.1093/jxb/ert326
10.1016/j.devcel.2020.10.012
10.1093/pcp/pcv103
10.1093/nar/gkx922
10.3390/ijms23042308
10.1111/tpj.14274
10.3389/fcell.2020.00039
10.1111/ppl.12459
10.3389/fpls.2018.01797
10.1073/pnas.2122495119
10.1016/j.bbamcr.2013.05.026
10.1111/tpj.15374
10.1007/s10265-011-0412-3
10.1104/pp.104.052423
10.1093/nar/gku1195
10.1371/journal.pone.0071078
10.1007/s11103-020-01084-x
10.1093/aobpla/plw055
10.3389/fpls.2014.00135
10.1002/wsbm.1185
10.3389/fpls.2013.00410
10.1093/jxb/erab138
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
DBID NPM
AAYXX
CITATION
7QP
7ST
C1K
SOI
7X8
DOI 10.1111/pce.14818
DatabaseName PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Calcium & Calcified Tissue Abstracts
CrossRef

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Botany
EISSN 1365-3040
EndPage 1333
ExternalDocumentID 10_1111_pce_14818
38221841
PCE14818
Genre article
Journal Article
GrantInformation_xml – fundername: National Research Foundation of Korea
  funderid: 2021R1A2C1007115; 2018R1A5A1023599
– fundername: National Research Foundation of Korea
  grantid: 2018R1A5A1023599
– fundername: National Research Foundation of Korea
  grantid: 2021R1A2C1007115
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
186
1OB
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FIJ
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
YNT
ZZTAW
~02
~IA
~KM
~WT
NPM
AAYXX
CITATION
7QP
7ST
C1K
SOI
7X8
ID FETCH-LOGICAL-c3538-15984e58a27f3b38e419f2ec9f9c66fec4527cff4f21c007c5145bc6c0ddb4e43
IEDL.DBID DR2
ISSN 0140-7791
IngestDate Sat Aug 17 04:18:47 EDT 2024
Thu Oct 10 18:24:01 EDT 2024
Thu Sep 26 17:57:04 EDT 2024
Sat Nov 02 12:29:41 EDT 2024
Sat Aug 24 01:06:08 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords ABA
ubiquitin-proteasome system
ubiquitination
protein degradation
Language English
License 2024 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3538-15984e58a27f3b38e419f2ec9f9c66fec4527cff4f21c007c5145bc6c0ddb4e43
Notes Yeongil Bae and Woonhee Baek contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2725-0854
PMID 38221841
PQID 2934051897
PQPubID 37957
PageCount 15
ParticipantIDs proquest_miscellaneous_2914256501
proquest_journals_2934051897
crossref_primary_10_1111_pce_14818
pubmed_primary_38221841
wiley_primary_10_1111_pce_14818_PCE14818
PublicationCentury 2000
PublicationDate April 2024
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Plant, cell and environment
PublicationTitleAlternate Plant Cell Environ
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014; 139
2013; 4
2021; 22
2013; 65
2002; 53
2019; 98
2005; 137
2018; 247
2012; 160
2022; 23
2000; 51
2019; 18
2013; 162
2020; 11
2020; 55
2021; 72
2013; 8
2007; 428
2011; 18
2013; 6
2022; 27
2018; 46
2020; 8
2018; 9
2001; 410
2011; 124
2014; 5
2015; 87
2015; 43
2006; 362
2011; 67
2016; 158
2020; 43
2022; 199
2015; 56
2007; 19
2015; 5
2021; 105
2021; 107
2020; 104
2002; 3
2014; 2014
2007; 50
2022; 119
1998; 23
2019; 100
2022; 113
2014; 1843
2018; 69
2016; 7
2021; 12
2001; 6
2018; 114
2018; 96
2022; 11
2012; 158
2018; 12
2016; 28
2012; 4
2021; 63
2016; 8
2010; 51
2018; 13
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 5
  issue: 1
  year: 2015
  article-title: Reference gene selection for normalization of RT‐qPCR gene expression data from leaves infected with pv. actinidiae
  publication-title: Scientific Reports
– volume: 247
  start-page: 875
  year: 2018
  end-page: 886
  article-title: The microtubule‐associated RING finger protein 1 (OsMAR1) acts as a negative regulator for salt‐stress response through the regulation of OCPI2 ( chymotrypsin protease inhibitor 2)
  publication-title: Planta
– volume: 43
  start-page: D1036
  issue: D1
  year: 2015
  end-page: D1041
  article-title: The Sol Genomics Network (SGN)—From genotype to phenotype to breeding
  publication-title: Nucleic Acids Research
– volume: 7
  year: 2016
  article-title: Role of ubiquitin‐mediated degradation system in plant biology
  publication-title: Frontiers in Plant Science
– volume: 23
  start-page: 104
  issue: 2
  year: 2022
  end-page: 119
  article-title: Abiotic stress responses in plants
  publication-title: Nature Reviews Genetics
– volume: 5
  year: 2014
  article-title: The role of ubiquitin and the 26S proteasome in plant abiotic stress signaling
  publication-title: Frontiers in Plant Science
– volume: 428
  start-page: 419
  year: 2007
  end-page: 438
  article-title: Mechanisms of high salinity tolerance in plants
  publication-title: Methods in Enzymology
– volume: 3
  start-page: reviews1017.1
  issue: 6
  year: 2002
  article-title: Plants and sodium ions: keeping company with the enemy
  publication-title: Genome Biology
– volume: 4
  year: 2013
  article-title: Sodium transport system in plant cells
  publication-title: Frontiers in Plant Science
– volume: 46
  start-page: D493
  issue: D1
  year: 2018
  end-page: D496
  article-title: 20 years of the SMART protein domain annotation resource
  publication-title: Nucleic Acids Research
– volume: 12
  issue: 2366
  year: 2021
  article-title: Pepper novel pseudo response regulator protein CaPRR2 modulates drought and high salt tolerance
  publication-title: Frontiers in Plant Science
– volume: 28
  start-page: 2178
  issue: 9
  year: 2016
  end-page: 2196
  article-title: Ubiquitin ligases RGLG1 and RGLG5 regulate abscisic acid signaling by controlling the turnover of phosphatase PP2CA
  publication-title: The Plant Cell
– volume: 43
  start-page: 1911
  issue: 8
  year: 2020
  end-page: 1924
  article-title: The pepper RING‐type E3 ligase, CaATIR1, positively regulates abscisic acid signalling and drought response by modulating the stability of CaATBZ1
  publication-title: Plant, Cell & Environment
– volume: 96
  start-page: 452
  issue: 2
  year: 2018
  end-page: 467
  article-title: Roles of pepper bZIP protein CaDILZ1 and its interacting partner RING‐type E3 ligase CaDSR1 in modulation of drought tolerance
  publication-title: The Plant Journal
– volume: 11
  issue: 5
  year: 2022
  article-title: Plant E3 ligases and their role in abiotic stress response
  publication-title: Cells
– volume: 12
  start-page: 77
  issue: 2
  year: 2018
  end-page: 92
  article-title: Nitric oxide‐induced salt stress tolerance in plants: ROS metabolism, signaling, and molecular interactions
  publication-title: Plant Biotechnology Reports
– volume: 362
  start-page: 1120
  issue: 5
  year: 2006
  end-page: 1131
  article-title: Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta
  publication-title: Journal of Molecular Biology
– volume: 56
  start-page: 1808
  issue: 9
  year: 2015
  end-page: 1819
  article-title: RING type E3 ligase CaAIR1 in pepper acts in the regulation of ABA signaling and drought stress response
  publication-title: Plant and Cell Physiology
– volume: 55
  start-page: 529
  issue: 5
  year: 2020
  end-page: 543
  article-title: Thriving under stress: how plants balance growth and the stress response
  publication-title: Developmental Cell
– volume: 65
  start-page: 849
  issue: 3
  year: 2013
  end-page: 858
  article-title: Sodium in plants: perception, signalling, and regulation of sodium fluxes
  publication-title: Journal of Experimental Botany
– volume: 199
  year: 2022
  article-title: Differential role of FANTASTIC FOUR‐like gene CaFAF1 on drought and salt stress responses
  publication-title: Environmental and Experimental Botany
– volume: 1843
  start-page: 47
  issue: 1
  year: 2014
  end-page: 60
  article-title: RING‐type E3 ligases: master manipulators of E2 ubiquitin‐conjugating enzymes and ubiquitination
  publication-title: Biochimica et Biophysica Acta (BBA)‐Molecular Cell Research
– volume: 51
  start-page: 463
  year: 2000
  end-page: 499
  article-title: Plant cellular and molecular responses to high salinity
  publication-title: Annual Review of Plant Physiology and Plant Molecular Biology
– volume: 23
  start-page: 89
  issue: 3
  year: 1998
  end-page: 91
  article-title: Protein methylation: a signal event in post‐translational modification
  publication-title: Trends in Biochemical Sciences
– volume: 104
  start-page: 1712
  issue: 6
  year: 2020
  end-page: 1723
  article-title: Arabidopsis RING‐type E3 ubiquitin ligase XBAT35. 2 promotes proteasome‐dependent degradation of ACD11 to attenuate abiotic stress tolerance
  publication-title: The Plant Journal
– volume: 6
  start-page: 463
  issue: 10
  year: 2001
  end-page: 470
  article-title: Ubiquitylation in plants: a post‐genomic look at a post‐translational modification
  publication-title: Trends in Plant Science
– volume: 4
  start-page: 565
  issue: 6
  year: 2012
  end-page: 583
  article-title: Post‐translational modification: nature's escape from genetic imprisonment and the basis for dynamic information encoding
  publication-title: WIREs Systems Biology and Medicine
– volume: 13
  issue: 8
  year: 2018
  article-title: Repertoire of plant RING E3 ubiquitin ligases revisited: new groups counting gene families and single genes
  publication-title: PLoS ONE
– volume: 12
  year: 2021
  article-title: Differential functions of pepper stress‐associated proteins in response to abiotic stresses
  publication-title: Frontiers in Plant Science
– volume: 11
  issue: 1483
  year: 2020
  article-title: Differential contribution of P5CS isoforms to stress tolerance in
  publication-title: Frontiers in Plant Science
– volume: 107
  start-page: 1148
  issue: 4
  year: 2021
  end-page: 1165
  article-title: Pepper ubiquitin‐specific protease, CaUBP12, positively modulates dehydration resistance by enhancing CaSnRK2.6 stability
  publication-title: The Plant Journal
– volume: 51
  start-page: 1821
  issue: 11
  year: 2010
  end-page: 1839
  article-title: Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport
  publication-title: Plant and Cell Physiology
– volume: 22
  issue: 9
  year: 2021
  article-title: Regulation of plant responses to salt stress
  publication-title: International Journal of Molecular Sciences
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 31
  article-title: Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4‐hydroxy‐2‐nonenal
  publication-title: Oxidative Medicine and Cellular Longevity
– volume: 53
  start-page: 247
  issue: 1
  year: 2002
  end-page: 273
  article-title: Salt and drought stress signal transduction in plants
  publication-title: Annual Review of Plant Biology
– volume: 87
  start-page: 441
  issue: 4–5
  year: 2015
  end-page: 458
  article-title: Knock‐down of stress inducible OsSRFP1 encoding an E3 ubiquitin ligase with transcriptional activation activity confers abiotic stress tolerance through enhancing antioxidant protection in rice
  publication-title: Plant Molecular Biology
– volume: 9
  issue: 1771
  year: 2018
  article-title: Abiotic stresses: general defenses of land plants and chances for engineering multistress tolerance
  publication-title: Frontiers in Plant Science
– volume: 8
  year: 2016
  article-title: Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars
  publication-title: AoB Plants
– volume: 23
  issue: 4
  year: 2022
  article-title: Roles of E3 ubiquitin ligases in plant responses to abiotic stresses
  publication-title: International Journal of Molecular Sciences
– volume: 18
  start-page: 1393
  issue: 9
  year: 2011
  end-page: 1402
  article-title: Ubiquitination of E3 ligases: self‐regulation of the ubiquitin system via proteolytic and non‐proteolytic mechanisms
  publication-title: Cell Death and Differentiation
– volume: 124
  start-page: 509
  issue: 4
  year: 2011
  end-page: 525
  article-title: ABA‐mediated transcriptional regulation in response to osmotic stress in plants
  publication-title: Journal of Plant Research
– volume: 5
  year: 2014
  article-title: Response of plants to water stress
  publication-title: Frontiers in Plant Science
– volume: 410
  start-page: 327
  issue: 6826
  year: 2001
  end-page: 330
  article-title: Guard cell abscisic acid signalling and engineering drought hardiness in plants
  publication-title: Nature
– volume: 139
  start-page: 113
  issue: 2
  year: 2014
  end-page: 122
  article-title: Selection of suitable reference genes for quantitative real‐time polymerase chain reaction in during flowering stages and under different abiotic stress conditions
  publication-title: Journal of the American Society for Horticultural Science
– volume: 63
  start-page: 484
  issue: 3
  year: 2021
  end-page: 493
  article-title: RING finger protein RGLG1 and RGLG2 negatively modulate MAPKKK18 mediated drought stress tolerance in
  publication-title: Journal of Integrative Plant Biology
– volume: 6
  start-page: 1388
  issue: 5
  year: 2013
  end-page: 1404
  article-title: Plant E3 ligases: flexible enzymes in a sessile world
  publication-title: Molecular Plant
– volume: 72
  start-page: 4520
  year: 2021
  end-page: 4534
  article-title: Pepper E3 ligase CaAIRE1 promotes ABA sensitivity and drought tolerance by degradation of protein phosphatase CaAITP1
  publication-title: Journal of Experimental Botany
– volume: 113
  start-page: 357
  year: 2022
  end-page: 374
  article-title: Pepper stress‐associated protein 14 is a substrate of CaSnRK2.6 that positively modulates abscisic acid‐dependent osmotic stress responses
  publication-title: The Plant Journal
– volume: 158
  start-page: 363
  issue: 1
  year: 2012
  end-page: 375
  article-title: Arabidopsis RGLG2, functioning as a RING E3 ligase, interacts with AtERF53 and negatively regulates the plant drought stress response
  publication-title: Plant Physiology
– volume: 18
  start-page: 13
  issue: Suppl1
  year: 2019
  end-page: 30
  article-title: Osmolyte‐induced folding and stability of proteins: concepts and characterization
  publication-title: Iranian Journal of Pharmaceutical Research: IJPR
– volume: 98
  start-page: 813
  issue: 5
  year: 2019
  end-page: 825
  article-title: ABA inhibits myristoylation and induces shuttling of the RGLG 1 E3 ligase to promote nuclear degradation of PP 2 CA
  publication-title: The Plant Journal
– volume: 27
  start-page: 39
  issue: 1
  year: 2022
  end-page: 55
  article-title: Proline metabolism as regulatory hub
  publication-title: Trends in Plant Science
– volume: 19
  start-page: 1912
  issue: 6
  year: 2007
  end-page: 1929
  article-title: SDIR1 is a RING finger E3 ligase that positively regulates stress‐responsive abscisic acid signaling in
  publication-title: The Plant Cell
– volume: 8
  issue: 8
  year: 2013
  article-title: The E3 ligase AtRDUF1 positively regulates salt stress responses in
  publication-title: PLoS ONE
– volume: 137
  start-page: 13
  issue: 1
  year: 2005
  end-page: 30
  article-title: Functional analysis of the RING‐type ubiquitin ligase family of
  publication-title: Plant Physiology
– volume: 119
  issue: 30
  year: 2022
  article-title: Elevated intracellular Na+ and osmolarity stimulate catalytic activity of the ubiquitin ligase Nedd4‐2
  publication-title: Proceedings of the National Academy of Sciences
– volume: 114
  start-page: 507
  issue: 3
  year: 2018
  end-page: 515
  article-title: Dynamics of posttranslational modification systems: recent progress and future directions
  publication-title: Biophysical Journal
– volume: 100
  start-page: 399
  issue: 2
  year: 2019
  end-page: 410
  article-title: Roles of pepper bZIP transcription factor CaATBZ1 and its interacting partner RING‐type E3 ligase CaASRF1 in modulation of ABA signalling and drought tolerance
  publication-title: The Plant Journal
– volume: 69
  start-page: 100
  issue: 1
  year: 2018
  end-page: 112
  article-title: Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response
  publication-title: Molecular Cell
– volume: 67
  start-page: 542
  issue: 3
  year: 2011
  end-page: 553
  article-title: Quantitative analysis of dynamic protein–protein interactions in planta by a floated‐leaf luciferase complementation imaging (FLuCI) assay using binary gateway vectors
  publication-title: The Plant Journal
– volume: 50
  start-page: 347
  issue: 2
  year: 2007
  end-page: 363
  article-title: The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV‐B light, drought and cold stress responses
  publication-title: The Plant Journal
– volume: 162
  start-page: 1733
  issue: 3
  year: 2013
  end-page: 1749
  article-title: The RING E3 ubiquitin ligase AtAIRP3/LOG2 participates in positive regulation of high‐salt and drought stress responses
  publication-title: Plant Physiology
– volume: 9
  year: 2018
  article-title: OsDIRP1, a putative RING E3 ligase, plays an opposite role in drought and cold stress responses as a negative and positive factor, respectively, in rice ( L.)
  publication-title: Frontiers in Plant Science
– volume: 158
  start-page: 168
  issue: 2
  year: 2016
  end-page: 179
  article-title: Molecular dissection of salt‐induced RING finger protein 1 (OsSIRP1): possible involvement in the sensitivity response to salinity stress
  publication-title: Physiologia Plantarum
– volume: 105
  start-page: 231
  issue: 3
  year: 2021
  end-page: 245
  article-title: E3 ligase, the salt‐induced RING finger protein 4 (OsSIRP4), negatively regulates salt stress responses via degradation of the OsPEX11‐1 protein
  publication-title: Plant Molecular Biology
– volume: 160
  start-page: 808
  issue: 2
  year: 2012
  end-page: 822
  article-title: Two novel RING‐type ubiquitin ligases, RGLG3 and RGLG4, are essential for jasmonate‐mediated responses in
  publication-title: Plant Physiology
– volume: 8
  year: 2020
  article-title: How to inactivate human ubiquitin E3 ligases by mutation
  publication-title: Frontiers in Cell and Developmental Biology
– ident: e_1_2_8_3_1
  doi: 10.3390/cells11050890
– ident: e_1_2_8_17_1
  doi: 10.1007/s11103-015-0294-1
– ident: e_1_2_8_49_1
  doi: 10.1038/srep16961
– ident: e_1_2_8_66_1
  doi: 10.1105/tpc.106.048488
– ident: e_1_2_8_20_1
  doi: 10.3389/fpls.2020.565134
– ident: e_1_2_8_40_1
  doi: 10.3389/fpls.2021.736421
– ident: e_1_2_8_36_1
  doi: 10.1111/tpj.15032
– ident: e_1_2_8_38_1
  doi: 10.1111/tpj.14046
– ident: e_1_2_8_59_1
  doi: 10.21273/jashs.139.2.113
– ident: e_1_2_8_22_1
  doi: 10.1111/j.1365-313X.2011.04607.x
– ident: e_1_2_8_11_1
  doi: 10.1038/cdd.2011.16
– ident: e_1_2_8_56_1
  doi: 10.1093/pcp/pcq156
– ident: e_1_2_8_28_1
  doi: 10.1371/journal.pone.0203442
– ident: e_1_2_8_47_1
  doi: 10.1007/s00425-017-2834-1
– ident: e_1_2_8_24_1
  doi: 10.1007/s11816-018-0480-0
– ident: e_1_2_8_64_1
  doi: 10.1038/s41576-021-00413-0
– ident: e_1_2_8_26_1
  doi: 10.3389/fpls.2018.01771
– ident: e_1_2_8_43_1
  doi: 10.22037/ijpr.2020.112621.13857
– ident: e_1_2_8_62_1
  doi: 10.1111/jipb.13019
– ident: e_1_2_8_37_1
  doi: 10.1016/j.envexpbot.2022.104887
– ident: e_1_2_8_60_1
  doi: 10.1105/tpc.16.00364
– ident: e_1_2_8_25_1
  doi: 10.1146/annurev.arplant.51.1.463
– ident: e_1_2_8_12_1
  doi: 10.1104/pp.111.189738
– ident: e_1_2_8_55_1
  doi: 10.1016/S0076-6879(07)28024-3
– ident: e_1_2_8_67_1
  doi: 10.3390/ijms22094609
– ident: e_1_2_8_57_1
  doi: 10.1016/j.molcel.2017.12.002
– ident: e_1_2_8_65_1
  doi: 10.1104/pp.112.203422
– ident: e_1_2_8_51_1
  doi: 10.1038/35066500
– ident: e_1_2_8_6_1
  doi: 10.1016/S1360-1385(01)02080-5
– ident: e_1_2_8_2_1
  doi: 10.1016/S0968-0004(98)01185-2
– ident: e_1_2_8_52_1
  doi: 10.3389/fpls.2016.00806
– ident: e_1_2_8_44_1
  doi: 10.3389/fpls.2014.00086
– ident: e_1_2_8_45_1
  doi: 10.1186/gb-2002-3-6-reviews1017
– ident: e_1_2_8_13_1
  doi: 10.1093/mp/sst005
– ident: e_1_2_8_68_1
  doi: 10.1146/annurev.arplant.53.091401.143329
– ident: e_1_2_8_9_1
  doi: 10.1111/tpj.16052
– ident: e_1_2_8_15_1
  doi: 10.1016/j.bpj.2017.11.3787
– ident: e_1_2_8_14_1
  doi: 10.1016/j.jmb.2006.08.017
– ident: e_1_2_8_30_1
  doi: 10.1111/pce.13789
– ident: e_1_2_8_33_1
  doi: 10.1104/pp.113.220103
– ident: e_1_2_8_8_1
  doi: 10.3389/fpls.2021.756068
– ident: e_1_2_8_29_1
  doi: 10.1111/tpj.14451
– ident: e_1_2_8_31_1
  doi: 10.1111/j.1365-313x.2007.03052.x
– ident: e_1_2_8_4_1
  doi: 10.1016/j.tplants.2021.07.009
– ident: e_1_2_8_5_1
  doi: 10.1155/2014/360438
– ident: e_1_2_8_41_1
  doi: 10.1093/jxb/ert326
– ident: e_1_2_8_63_1
  doi: 10.1016/j.devcel.2020.10.012
– ident: e_1_2_8_46_1
  doi: 10.1093/pcp/pcv103
– ident: e_1_2_8_34_1
  doi: 10.1093/nar/gkx922
– ident: e_1_2_8_58_1
  doi: 10.3390/ijms23042308
– ident: e_1_2_8_10_1
  doi: 10.1111/tpj.14274
– ident: e_1_2_8_21_1
  doi: 10.3389/fcell.2020.00039
– ident: e_1_2_8_27_1
  doi: 10.1111/ppl.12459
– ident: e_1_2_8_16_1
  doi: 10.3389/fpls.2018.01797
– ident: e_1_2_8_48_1
  doi: 10.1073/pnas.2122495119
– ident: e_1_2_8_42_1
  doi: 10.1016/j.bbamcr.2013.05.026
– ident: e_1_2_8_39_1
  doi: 10.1111/tpj.15374
– ident: e_1_2_8_19_1
  doi: 10.1007/s10265-011-0412-3
– ident: e_1_2_8_54_1
  doi: 10.1104/pp.104.052423
– ident: e_1_2_8_18_1
  doi: 10.1093/nar/gku1195
– ident: e_1_2_8_35_1
  doi: 10.1371/journal.pone.0071078
– ident: e_1_2_8_32_1
  doi: 10.1007/s11103-020-01084-x
– ident: e_1_2_8_23_1
  doi: 10.1093/aobpla/plw055
– ident: e_1_2_8_53_1
  doi: 10.3389/fpls.2014.00135
– ident: e_1_2_8_50_1
  doi: 10.1002/wsbm.1185
– ident: e_1_2_8_61_1
  doi: 10.3389/fpls.2013.00410
– ident: e_1_2_8_7_1
  doi: 10.1093/jxb/erab138
SSID ssj0001479
Score 2.4897072
Snippet Controlling protein stability or degradation via the ubiquitin‐26S proteasome system is a crucial mechanism in plant cellular responses to stress conditions....
Controlling protein stability or degradation via the ubiquitin-26S proteasome system is a crucial mechanism in plant cellular responses to stress conditions....
Abstract Controlling protein stability or degradation via the ubiquitin‐26S proteasome system is a crucial mechanism in plant cellular responses to stress...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 1319
SubjectTerms ABA
Abiotic stress
Biodegradation
Capsicum annuum
Degradation
Peppers
Phenotypes
Proteasome 26S
Proteasomes
protein degradation
Proteins
RING finger proteins
Salinity tolerance
Salt tolerance
Ubiquitin-protein ligase
Ubiquitination
ubiquitin‐proteasome system
Vegetables
Title A pepper RING‐finger E3 ligase, CaFIRF1, negatively regulates the high‐salt stress response by modulating the stability of CaFAF1
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14818
https://www.ncbi.nlm.nih.gov/pubmed/38221841
https://www.proquest.com/docview/2934051897
https://search.proquest.com/docview/2914256501
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VFUhceJTXQosM4sChW61j52Fx2i4bFSQQqqjUA1IUO-MV6jaJ9nEIJy7c-Y38Esb2ZqEgJMQtUuw4sT0zn53P3wA8N1UpojSOhqPIaFqgKDKpipxhUlFsRnJ_Et3Z4bfvkpMz-eY8Pt-Bl_1ZmKAPsd1wc5bh_bUz8FIvfzHy1iCZOcUb8r9cpI7O9er0p3QUl0Fnz9EX01TxjaqQY_Fsa16NRX8AzKt41Qec_BZ87F818EwujtYrfWQ-_6bi-J_fchtuboAoG4eZcwd2sN6D6yE1ZbcH144bgo3dXfg6Zi22LS6Y4018__LN-o1ANhVs_mlGMfCQTcr89WnOD1mNM68jPu_YIuS4xyUjhMmcKDJVXZbzFQunU6iAJ-ci0x27bCqfRaye-dIEWD1lt2ONdQ8f5_wenOXTD5OT4SZ3w9AI50MJJWUS46yMUiu0yFByZSM0yiqTJBaNjKPUWCttxA3hFEPALdYmMaOq0hKluA-7dVPjQ2A2tro0imclOmmZkaqMUC7ZUUaVVcYH8KwfxaINEh1Fv7Shji18xw5gvx_fYmOly4KgDuFVnql0AE-3t8m-3E-TssZm7cpwcmuEY6mdB2FebFsRhK5ohUx3XvjR_XvzxfvJ1F88-veij-FGRAgq0IT2YXe1WOMBIaCVfuKn-g_ujgC9
link.rule.ids 315,783,787,1378,27937,27938,46307,46731
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VAoILjwLtQgGDOHDoVus4L0tclmWjLbQVqlqplypKnPEKdZtE-ziEUy-98xv5JYztzUJBSIhbpNhxYvub-eyMvwF4o4pMeFHgdXueymmBIglSBRnDsCDfjGT-fDRnhw8Ow9GJ__E0OF2Dd-1ZGKcPsdpwM8iw9toA3GxI_4LyWiHhnBzODbhJcBcGlh-OfopHcd8p7ZkAxiiSfKkrZOJ4VlWve6M_KOZ1xmpdTnIfztqXdZEm57uLeb6rvv6m4_i_X_MA7i25KOu7yfMQ1rDcgNsuO2WzAbfeV8Qcm0dw1Wc11jVOmQmd-H75Tdu9QDYUbPJlTG5whw2yZO8o4TusxLGVEp80bOrS3OOMEclkRheZqs6yyZy5AypUwMbnIssbdlEVNpFYObalibPaqN2GVdo8vJ_wx3CSDI8Ho-4yfUNXCWNGiSjFPgZx5kVa5CJGn0vtoZJaqjDUqPzAi5TWvva4IqqiiLsFuQpVryhyH33xBNbLqsQtYDrQeaYkjzM06jI9WSghTb6jmCrLmHfgdTuMae1UOtJ2dUMdm9qO7cB2O8DpEqizlNgOUVYey6gDr1a3CWLmv0lWYrUwZThZNqKy1M6mmxirVgQRLFok0523dnj_3nz6eTC0F0__vehLuDM6PthP9_cOPz2Dux4RKhc1tA3r8-kCnxMhmucv7Lz_AepnBNY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VFhCXFgqU7QMM4sChW60T52Fx2m43anlUVUWlHipFiTNeoS5JtI9DOHHhzm_klzC2NwsFISFukTKOE3sen53xNwAvVZH5XhR43Z6nclqgSDKpgpxhWFBsRnJ_As3Z4fen4fGFeHMZXK7A6_YsjOOHWG64Gcuw_toYeF3oX4y8VkhmTvHmFqyJkFTVIKLzn9xRXDiiPZO_GEWSL2iFTBrPsunNYPQHwrwJWG3ESTbgqn1Xl2hyfTCf5Qfq8280jv_5MfdhfYFEWd-pzgNYwXIT7rjalM0m3D6sCDc2D-Frn9VY1zhhJnHi-5dv2u4EsqHPxh9HFAT32SBLTs4Tvs9KHFki8XHDJq7IPU4ZQUxmWJGp6TQbz5g7nkICNjsXWd6wT1Vhy4iVIytNiNXm7Das0ubh_YQ_gotk-GFw3F0Ub-gq3zhRgkmxwCDOvEj7uR-j4FJ7qKSWKgw1KhF4kdJaaI8rAiqKkFuQq1D1iiIXKPzHsFpWJT4BpgOdZ0ryOEPDLdOThfKlqXYUU2MZ8w68aGcxrR1HR9qubWhgUzuwHdht5zddmOk0JaxDgJXHMurA8-VtMjDz1yQrsZobGU5-jYAs9bPl9GLZi0_wipbIdOeVnd2_d5-eDYb2YvvfRZ_B3bOjJH13cvp2B-55hKZcytAurM4mc9wjNDTLn1qt_wHcAgOF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+pepper+RING-finger+E3+ligase%2C+CaFIRF1%2C+negatively+regulates+the+high-salt+stress+response+by+modulating+the+stability+of+CaFAF1&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Bae%2C+Yeongil&rft.au=Baek%2C+Woonhee&rft.au=Lim%2C+Chae+Woo&rft.au=Lee%2C+Sung+Chul&rft.date=2024-04-01&rft.eissn=1365-3040&rft.volume=47&rft.issue=4&rft.spage=1319&rft.epage=1333&rft_id=info:doi/10.1111%2Fpce.14818&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon