Ultrafast and Ultralow‐Power Voltage‐Dominated Magnetic Logic
To solve the von Neumann performance bottleneck, many kinds of magnetic logic devices are proposed. However, the operation speed, power consumption, and error rate of these devices are incompatible with complementary metal−oxide−semiconductor (CMOS) logic, and moreover, cascading of the devices is d...
Saved in:
Published in | Advanced intelligent systems Vol. 4; no. 5 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
01.05.2022
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To solve the von Neumann performance bottleneck, many kinds of magnetic logic devices are proposed. However, the operation speed, power consumption, and error rate of these devices are incompatible with complementary metal−oxide−semiconductor (CMOS) logic, and moreover, cascading of the devices is difficult. Herein, instead, a new voltage‐dominated magnetic logic‐memory device is proposed, with switching time of 300 ps and power consumption of 150 fJ, representing ≈10 times improvement compared with CMOS logic on the same scale. The device has a reliable output ratio of >3000%, a low working magnetic field of <10 mT, and a low error rate of ≈10−7. Moreover, complex logic operations, such as XOR gates and a full adder, can be realized using this device via cascading. As a result of these advantages, the magnetic logic‐memory device is well suited for practical applications.
In the voltage‐dominated magnetic logic‐memory device, by coupling the anomalous Hall effect in magnetic materials and the voltage‐controlled negative resistance (n‐type NDR), four basic Boolean logic operations can be programmed by magnetic bit at room temperature with excellent high‐frequency performance (switching time = 0.3 ns). In addition, complex logic operations (XOR and full adder) can be performed by cascade. |
---|---|
AbstractList | To solve the von Neumann performance bottleneck, many kinds of magnetic logic devices are proposed. However, the operation speed, power consumption, and error rate of these devices are incompatible with complementary metal−oxide−semiconductor (CMOS) logic, and moreover, cascading of the devices is difficult. Herein, instead, a new voltage‐dominated magnetic logic‐memory device is proposed, with switching time of 300 ps and power consumption of 150 fJ, representing ≈10 times improvement compared with CMOS logic on the same scale. The device has a reliable output ratio of >3000%, a low working magnetic field of <10 mT, and a low error rate of ≈10
−7
. Moreover, complex logic operations, such as XOR gates and a full adder, can be realized using this device via cascading. As a result of these advantages, the magnetic logic‐memory device is well suited for practical applications. To solve the von Neumann performance bottleneck, many kinds of magnetic logic devices are proposed. However, the operation speed, power consumption, and error rate of these devices are incompatible with complementary metal−oxide−semiconductor (CMOS) logic, and moreover, cascading of the devices is difficult. Herein, instead, a new voltage-dominated magnetic logic-memory device is proposed, with switching time of 300 ps and power consumption of 150 fJ, representing ≈10 times improvement compared with CMOS logic on the same scale. The device has a reliable output ratio of >3000%, a low working magnetic field of <10 mT, and a low error rate of ≈10−7. Moreover, complex logic operations, such as XOR gates and a full adder, can be realized using this device via cascading. As a result of these advantages, the magnetic logic-memory device is well suited for practical applications. To solve the von Neumann performance bottleneck, many kinds of magnetic logic devices are proposed. However, the operation speed, power consumption, and error rate of these devices are incompatible with complementary metal−oxide−semiconductor (CMOS) logic, and moreover, cascading of the devices is difficult. Herein, instead, a new voltage‐dominated magnetic logic‐memory device is proposed, with switching time of 300 ps and power consumption of 150 fJ, representing ≈10 times improvement compared with CMOS logic on the same scale. The device has a reliable output ratio of >3000%, a low working magnetic field of <10 mT, and a low error rate of ≈10−7. Moreover, complex logic operations, such as XOR gates and a full adder, can be realized using this device via cascading. As a result of these advantages, the magnetic logic‐memory device is well suited for practical applications. In the voltage‐dominated magnetic logic‐memory device, by coupling the anomalous Hall effect in magnetic materials and the voltage‐controlled negative resistance (n‐type NDR), four basic Boolean logic operations can be programmed by magnetic bit at room temperature with excellent high‐frequency performance (switching time = 0.3 ns). In addition, complex logic operations (XOR and full adder) can be performed by cascade. |
Author | Pu, Yuchen Mou, Hongming Zhang, Xixiang Zhang, Xiaozhong Lu, Ziyao |
Author_xml | – sequence: 1 givenname: Yuchen surname: Pu fullname: Pu, Yuchen organization: Tsinghua University – sequence: 2 givenname: Ziyao surname: Lu fullname: Lu, Ziyao organization: Tsinghua University – sequence: 3 givenname: Hongming surname: Mou fullname: Mou, Hongming organization: Tsinghua University – sequence: 4 givenname: Xixiang surname: Zhang fullname: Zhang, Xixiang organization: King Abdullah University of Science and Technology (KAUST) – sequence: 5 givenname: Xiaozhong orcidid: 0000-0002-6998-8243 surname: Zhang fullname: Zhang, Xiaozhong email: xzzhang@tsinghua.edu.cn organization: Tsinghua University |
BookMark | eNqFUE1LAzEQDVJBrV49L3huzUw2SfdY6lehouAHeArTbFK2rJua3VJ68yf4G_0lbltRb55m3vDem8c7Yp0qVI6xU-B94BzPqajXfeTYApB6jx2iSnkvlUp3_uwH7KSu57wVgAaO-pANn8omkqe6SajKky0qw-rz_eM-rFxMnkPZ0My1-CK8FhU1Lk9uaVa5prDJJMwKe8z2PZW1O_meXfZ0dfk4uulN7q7Ho-GkZ4UUuueEt6g0ghBAamotOskdShIePGUe_SBXCE4qVFlu0UqONhNTrV2ugKzosvHONw80N4tYvFJcm0CF2R5CnBmKbarSGSkFAfdgwUOKAgceIcu404OpgExkrdfZzmsRw9vS1Y2Zh2Ws2vgGlVJth4N0w-rvWDaGuo7O_3wFbjatm03r5qf1VpDtBKuidOt_2GY4fnj51X4Ba7qH1A |
CitedBy_id | crossref_primary_10_1109_LMAG_2022_3146132 crossref_primary_10_1007_s12613_024_2855_2 |
Cites_doi | 10.1002/adfm.201402955 10.1002/adma.201605027 10.1109/TCS.1985.1085599 10.1109/TED.2020.2978085 10.1109/TC.2018.2858251 10.1038/s41467-018-08181-y 10.1002/aelm.201800782 10.1002/cta.2627 10.1038/nmat4886 10.1109/LED.2020.2987211 10.1038/nnano.2016.84 10.1063/1.99886 10.1145/359576.359579 10.1038/s41565-019-0607-7 10.1038/s41467-018-08274-8 10.4028/www.scientific.net/AMR.854.89 10.1109/LED.2019.2932479 10.1002/adfm.201807282 10.1038/nnano.2015.18 10.1063/5.0013301 10.1126/science.282.5394.1660 10.1126/science.1218197 10.1142/S2010324712400024 10.1109/MDT.2005.134 10.1109/TED.2019.2955360 10.1038/s41586-020-2061-y 10.1063/1.4902443 10.1063/1.3694270 10.1126/science.1108813 10.1021/acsaelm.0c00318 10.1038/nature10309 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Advanced Intelligent Systems published by Wiley‐VCH GmbH 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. Advanced Intelligent Systems published by Wiley‐VCH GmbH – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PIMPY PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.1002/aisy.202100157 |
DatabaseName | Wiley-Blackwell Open Access Collection Wiley Free Archive CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest One Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2640-4567 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_553a10f1c1f142328f21990e78b31939 10_1002_aisy_202100157 AISY202100157 |
Genre | article |
GrantInformation_xml | – fundername: National Science Foundation of China funderid: 11674190 – fundername: National Key RD Program of China funderid: 2017YFA0206202 |
GroupedDBID | 0R~ 1OC 24P AAFWJ AAHHS ACCFJ ACXQS ADKYN ADZMN ADZOD AEEZP AEQDE AFKRA AFPKN AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS ARCSS AVUZU BENPR BGLVJ CCPQU EBS EJD GROUPED_DOAJ HCIFZ IAO M~E OK1 PIMPY WIN AAYXX CITATION ITC 8FE 8FG ABUWG AZQEC DWQXO P62 PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c3537-e3fc26721331a6bcc2e50e25a3f1fa9f2f8d621e56269dc2c502c93b77ed61ac3 |
IEDL.DBID | DOA |
ISSN | 2640-4567 |
IngestDate | Tue Oct 22 14:52:35 EDT 2024 Thu Oct 10 18:35:36 EDT 2024 Thu Sep 26 19:49:18 EDT 2024 Sat Aug 24 00:56:26 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3537-e3fc26721331a6bcc2e50e25a3f1fa9f2f8d621e56269dc2c502c93b77ed61ac3 |
ORCID | 0000-0002-6998-8243 |
OpenAccessLink | https://doaj.org/article/553a10f1c1f142328f21990e78b31939 |
PQID | 2666001849 |
PQPubID | 5064933 |
PageCount | 6 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_553a10f1c1f142328f21990e78b31939 proquest_journals_2666001849 crossref_primary_10_1002_aisy_202100157 wiley_primary_10_1002_aisy_202100157_AISY202100157 |
PublicationCentury | 2000 |
PublicationDate | May 2022 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced intelligent systems |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2017 2019; 16 40 2012; 100 2019; 5 2020; 41 2012 2018; 02 2019; 10 1978 2005; 21 22 2015; 10 2019 2020; 29 2 2020; 15 2017; 29 2016 2019; 11 10 2014; 105 2015; 25 2019; 47 2012 2011; 336 476 1988 2020; 53 67 2020; 117 2018 2020; 579 2005; 309 2016 1985; 32 2013 2017 2020 2019; 854 67 68 1998; 282 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_11_2 e_1_2_9_12_1 e_1_2_9_13_3 e_1_2_9_15_1 e_1_2_9_13_2 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_13_4 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_22_2 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_6_2 e_1_2_9_7_1 e_1_2_9_5_2 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_2_2 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_25_2 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_26_2 |
References_xml | – volume: 32 start-page: 46 year: 1985 publication-title: IEEE Trans. Circuits Syst. – volume: 579 start-page: 214 year: 2020 publication-title: Nature – volume: 15 start-page: 111 year: 2020 publication-title: Nat. Nanotechnol. – volume: 02 start-page: 1240002 year: 2012 2018 publication-title: Spin – volume: 854 67 68 start-page: 89 1972 1159 year: 2013 2017 2020 2019 publication-title: Adv. Mater. Res. IEEE Trans. Electron Devices IEEE Trans. Comput. – volume: 47 start-page: 917 year: 2019 publication-title: Int. J. Circuit Theory Appl. – volume: 16 40 start-page: 712 1554 year: 2017 2019 publication-title: Nat. Mater. IEEE Electron Device Lett. – volume: 10 start-page: 248 year: 2019 publication-title: Nat. Commun. – volume: 100 start-page: 132408 year: 2012 publication-title: Appl. Phys. Lett. – volume: 336 476 start-page: 555 189 year: 2012 2011 publication-title: Science Nature – volume: 117 start-page: 022407 year: 2020 publication-title: Appl. Phys. Lett. – volume: 41 start-page: 928 year: 2020 publication-title: IEEE Electron Device Lett. – year: 2016 – year: 2018 – volume: 53 67 start-page: 385 75 year: 1988 2020 publication-title: Appl. Phys. Lett. IEEE Trans. Electron Devices – volume: 309 start-page: 1688 year: 2005 publication-title: Science – volume: 29 start-page: 1605027 year: 2017 publication-title: Adv. Mater. – volume: 11 10 start-page: 758 233 year: 2016 2019 publication-title: Nat. Nanotechnol. Nat. Commun. – volume: 29 2 start-page: 1807282 2375 year: 2019 2020 publication-title: Adv. Funct. Mater. ACS Appl. Electron. Mater. – volume: 25 start-page: 158 year: 2015 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 1800782 year: 2019 publication-title: Adv. Electron. Mater. – volume: 282 start-page: 1660 year: 1998 publication-title: Science – volume: 105 start-page: 212402 year: 2014 publication-title: Appl. Phys. Lett. – volume: 21 22 start-page: 613 556 year: 1978 2005 publication-title: Commun. ACM IEEE Design Test Comput. – volume: 10 start-page: 333 year: 2015 publication-title: Nat. Nanotechnol. – ident: e_1_2_9_4_1 doi: 10.1002/adfm.201402955 – ident: e_1_2_9_5_2 – ident: e_1_2_9_16_1 doi: 10.1002/adma.201605027 – ident: e_1_2_9_19_1 doi: 10.1109/TCS.1985.1085599 – ident: e_1_2_9_13_3 doi: 10.1109/TED.2020.2978085 – ident: e_1_2_9_13_4 doi: 10.1109/TC.2018.2858251 – ident: e_1_2_9_26_2 doi: 10.1038/s41467-018-08181-y – ident: e_1_2_9_12_1 doi: 10.1002/aelm.201800782 – ident: e_1_2_9_17_1 – ident: e_1_2_9_21_1 doi: 10.1002/cta.2627 – ident: e_1_2_9_6_1 doi: 10.1038/nmat4886 – ident: e_1_2_9_14_1 doi: 10.1109/LED.2020.2987211 – ident: e_1_2_9_26_1 doi: 10.1038/nnano.2016.84 – ident: e_1_2_9_25_1 doi: 10.1063/1.99886 – ident: e_1_2_9_2_1 doi: 10.1145/359576.359579 – ident: e_1_2_9_20_1 doi: 10.1038/s41565-019-0607-7 – ident: e_1_2_9_7_1 doi: 10.1038/s41467-018-08274-8 – ident: e_1_2_9_13_1 doi: 10.4028/www.scientific.net/AMR.854.89 – ident: e_1_2_9_6_2 doi: 10.1109/LED.2019.2932479 – ident: e_1_2_9_11_1 doi: 10.1002/adfm.201807282 – ident: e_1_2_9_8_1 doi: 10.1038/nnano.2015.18 – ident: e_1_2_9_15_1 doi: 10.1063/5.0013301 – ident: e_1_2_9_3_1 doi: 10.1126/science.282.5394.1660 – ident: e_1_2_9_22_1 doi: 10.1126/science.1218197 – ident: e_1_2_9_5_1 doi: 10.1142/S2010324712400024 – ident: e_1_2_9_2_2 doi: 10.1109/MDT.2005.134 – ident: e_1_2_9_25_2 doi: 10.1109/TED.2019.2955360 – ident: e_1_2_9_18_1 – ident: e_1_2_9_10_1 doi: 10.1038/s41586-020-2061-y – ident: e_1_2_9_24_1 doi: 10.1063/1.4902443 – ident: e_1_2_9_13_2 – ident: e_1_2_9_23_1 doi: 10.1063/1.3694270 – ident: e_1_2_9_9_1 doi: 10.1126/science.1108813 – ident: e_1_2_9_11_2 doi: 10.1021/acsaelm.0c00318 – ident: e_1_2_9_22_2 doi: 10.1038/nature10309 |
SSID | ssj0002171027 |
Score | 2.2448525 |
Snippet | To solve the von Neumann performance bottleneck, many kinds of magnetic logic devices are proposed. However, the operation speed, power consumption, and error... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Publisher |
SubjectTerms | CMOS Diodes Electric fields Electric potential Electrodes Electromagnetism Gates (circuits) Logic Magnetic fields magnetic logic Magnetism Memory devices nonvolatile memory Power consumption Power management Voltage voltage-controlled negative resistance |
SummonAdditionalLinks | – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3LSsQwFA06s3Ejiorjiy4EV8Ekt0mbhYiPERUUUUd0FZI0EWFodaYi_r1JpzPqRpcppZST5J5zk_tAaFcYXhhtCLYaeHBQ8gIHlQHYSRqsX8ZAQExwvroW54P08pE_tgdu4zascmoTG0NdVDaeke8HIoncnKfy8PUNx65R8Xa1baExj7oseAqkg7rH_eub29kpSxDcgUGzabVGwvb1y_gzuIUs1h6KnPSDjZqi_b-U5k-92hDO2RJabJVicjSZ2mU058oVdDAY1iPt9bhOdFkkzWhYfeCb2OwseaiGdbAP-LSKAS5BSyZX-rmMaYpJ7KlsV9HgrH9_co7bDgjYAocMO_CWieCkAVAtjLXMceIY1-Cp19IznxeCURdEjJCFZZYTZiWYLHOFoNrCGuqUVenWUUKBGq2J9DJNU7DSSGIIOOFsLnWRmx7amyKhXieFLtSkpDFTETM1w6yHjiNQs7digermQTV6Vu16V5yDpsRTSz2Nd8G5D6ZREpflJmx6kD20NYVZtbtmrL7nuIdYA_0_v6KOLu6eZqONv7-5iRZYzF1oohW3UKcevbvtoChqs9Mumy_0hscV priority: 102 providerName: ProQuest – databaseName: Wiley-Blackwell Open Access Collection dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUKvfSCiijqUopyQOopwvbETnzcUhCtRIXUbgUny3ZshLRKqt0g1Bs_gd_YX8JMdjewJySOzpeiF8_MG8fzhrFD7VXtned5cKAwQanqHFkG5NEI9H6lBA1U4Hz-U59Nih-X6vJZFf9CH2JYcCPL6P01Gbjz86Mn0VB3M_-H-Z0kESFVbrC3JBtD6vmyuBhWWZBwYwSlmmkM_DxHtlCulBu5PFp_xFpk6gX811jnc-7aB5_T92xryRqz8eIzb7M3sdlh48m0m7nk5l3mmjrrR9P27v_9wwW1Psv-tNMOvQWOv7W04QW5ZXburhsqW8yox3L4wCanJ7-Pz_JlR4Q8gIIyj5CC1Ji0AQinfQgyKh6lcpBEcibJVNVaioikRps6yKC4DAZ8WcZaCxdgl202bRM_skyA8M5xk0xRFBCMN9xziDqGyri68iP2ZYWG_bsQvrALiWNpCTc74DZiXwms4SoSrO4PtLNru5z_VilwgicRRBL0b7hK6CoNj2Xl0QmAGbH9FdR2aUVzi-SB-FhV4GnZw__Cq9jx919Xw2jvNTd9Yu8kVTj0exr32WY3u42fkXd0_qCfWo_C6M7J priority: 102 providerName: Wiley-Blackwell |
Title | Ultrafast and Ultralow‐Power Voltage‐Dominated Magnetic Logic |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faisy.202100157 https://www.proquest.com/docview/2666001849 https://doaj.org/article/553a10f1c1f142328f21990e78b31939 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BThsxELUovXBBrSgikEZ7QOppFduz9q6PgSZApaAICAony_baqFKUoGRRxQXxCf3GfknHu0mUnrj0Yml292A92zNvtJ43hJxKK0prLE2dAYEJSlGmyDIg9Yqh98s5SIgFzsNreTnOfkzEZKvVV7wT1sgDN8B1hQDDaGCOBRZ_KhYBz5iiPi8s7h5oSveo2kqmog9Goo2RM1-rNFLeNT-XL5gO8qg5FGPRVhSqxfr_YZjbPLUONINPZH_FEJNeM7PPZMfPDkhvPK0WJphllWDqn9TWdP7rz9vvUWxzltzPpxV6BrS_z-PlFuSRydA8zmKJYhL7KbsvZDzo351fpqvuB6kDAXnqITguMUEDYEZa57gX1HNhILBgVOChKCVnHgmMVKXjTlDuFNg896VkxsEh2Z3NZ_6IJAyYNYaqoLIsA6esopaCl94VypSFbZFvazT0UyNyoRs5Y64jbnqDW4ucRbA2X0Vx6voBLpleLZl-b8lapL2GWq9OzFIjUYjcq8jwNa_hf2cqund1-7Cxjv_HxE7IHo_VDfV9xjbZrRbP_ityjsp2yAeejXAsBhcd8vGsfz266dRbDsfha_8vbyLUgw |
link.rule.ids | 315,783,787,867,2109,11574,12777,21400,27936,27937,33385,33756,43612,43817,46064,46488,50826,50935,74363,74630 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Na9wwEBVtcmgvIaUt3eajPhR6EpE0lmwdQsgnmza7hDZb0pOQZCkUFjvZdQj599F4vdv00h5ljDEjad4baeYNIZ-Vk5WzjlFvQaYApaxoYhlAg-bJ-xUCFGCB82ishpP867W87g_c5n1a5dIndo66ajyeke8lIEFsLnN9cHtHsWsU3q72LTReknWUqkrB1_rR6fjy--qUJRHuhKDFUq2RiT37e_6YwkKB2kOISc_QqBPt_4tpPuerHeCcbZKNnilmh4upfUNehPot2Z9M25mNdt5mtq6ybjRtHuglNjvLfjbTNvkHetJggkviktnI3tRYpphhT2X_jkzOTq-Oh7TvgEA9SChogOiFSkEaALfKeS-CZEFIC5FHq6OIZaUED4nEKF154SUTXoMrilApbj28J2t1U4cPJOPAnbVMR53nOXjtNHMMggq-1LYq3YB8WVrC3C6ELsxC0lgYtJlZ2WxAjtBQq7dQoLp70MxuTL_ejZRgOYvc88jxLriMyTVqForSpU0PekC2l2Y2_a6Zmz9zPCCiM_1_fsUcnv_4tRp9_Pc3P5FXw6vRhbk4H3_bIq8F1jF0mYvbZK2d3YedxC5at9svoSeOacoP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1RaxQxEB70CuJLUVS8WnUfBJ_CJZlNdvMg0toerdrjUE_qU0iySRGO3fZuRfz3Jnu5s77oY5ZlWSaT7_smmcwAvJJWNNZYSpxBEQOUuiFRZSDxikX0qzhKTBecL2bybFG-vxSXOf9pndMqt5g4AHXTubRHPolEkri5LtUk5LSI-cn07fUNSR2k0klrbqdxF_aqUiIdwd7x6Wz-abfjEsV3ZNNqW7mR8on5vv4VQ0Se6hAlfrrFTEMB_79U523tOpDP9AHsZ9VYHG2m-SHc8e0jeLNY9isTzLovTNsUw2jZ_STz1Pis-Not-4gV5KRLyS5RVxYX5qpNVxaL1F_ZPYbF9PTLuzOSuyEQhwIr4jE4LmPAhsiMtM5xL6jnwmBgwajAQ91IznwUNFI1jjtBuVNoq8o3khmHT2DUdq1_CgVDZo2hKqiyLNEpq6il6KV3tTJNbcfwemsJfb0peqE35Y25TjbTO5uN4TgZavdWKlY9POhWVzr7vhYCDaOBORZYOheuQ4RJRX1V2wgAqMZwuDWzzitorf_M9xj4YPr__Io-Ov_8bTc6-Pc3X8K96D364_nswzO4z9OVhiGJ8RBG_eqHfx6FRm9fZA_6DQKxzj0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrafast+and+Ultralow%E2%80%90Power+Voltage%E2%80%90Dominated+Magnetic+Logic&rft.jtitle=Advanced+intelligent+systems&rft.au=Yuchen+Pu&rft.au=Ziyao+Lu&rft.au=Hongming+Mou&rft.au=Xixiang+Zhang&rft.date=2022-05-01&rft.pub=Wiley&rft.eissn=2640-4567&rft.volume=4&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faisy.202100157&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_553a10f1c1f142328f21990e78b31939 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2640-4567&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2640-4567&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2640-4567&client=summon |