Ultrafast and Ultralow‐Power Voltage‐Dominated Magnetic Logic

To solve the von Neumann performance bottleneck, many kinds of magnetic logic devices are proposed. However, the operation speed, power consumption, and error rate of these devices are incompatible with complementary metal−oxide−semiconductor (CMOS) logic, and moreover, cascading of the devices is d...

Full description

Saved in:
Bibliographic Details
Published inAdvanced intelligent systems Vol. 4; no. 5
Main Authors Pu, Yuchen, Lu, Ziyao, Mou, Hongming, Zhang, Xixiang, Zhang, Xiaozhong
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.05.2022
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To solve the von Neumann performance bottleneck, many kinds of magnetic logic devices are proposed. However, the operation speed, power consumption, and error rate of these devices are incompatible with complementary metal−oxide−semiconductor (CMOS) logic, and moreover, cascading of the devices is difficult. Herein, instead, a new voltage‐dominated magnetic logic‐memory device is proposed, with switching time of 300 ps and power consumption of 150 fJ, representing ≈10 times improvement compared with CMOS logic on the same scale. The device has a reliable output ratio of >3000%, a low working magnetic field of <10 mT, and a low error rate of ≈10−7. Moreover, complex logic operations, such as XOR gates and a full adder, can be realized using this device via cascading. As a result of these advantages, the magnetic logic‐memory device is well suited for practical applications. In the voltage‐dominated magnetic logic‐memory device, by coupling the anomalous Hall effect in magnetic materials and the voltage‐controlled negative resistance (n‐type NDR), four basic Boolean logic operations can be programmed by magnetic bit at room temperature with excellent high‐frequency performance (switching time = 0.3 ns). In addition, complex logic operations (XOR and full adder) can be performed by cascade.
AbstractList To solve the von Neumann performance bottleneck, many kinds of magnetic logic devices are proposed. However, the operation speed, power consumption, and error rate of these devices are incompatible with complementary metal−oxide−semiconductor (CMOS) logic, and moreover, cascading of the devices is difficult. Herein, instead, a new voltage‐dominated magnetic logic‐memory device is proposed, with switching time of 300 ps and power consumption of 150 fJ, representing ≈10 times improvement compared with CMOS logic on the same scale. The device has a reliable output ratio of >3000%, a low working magnetic field of <10 mT, and a low error rate of ≈10 −7 . Moreover, complex logic operations, such as XOR gates and a full adder, can be realized using this device via cascading. As a result of these advantages, the magnetic logic‐memory device is well suited for practical applications.
To solve the von Neumann performance bottleneck, many kinds of magnetic logic devices are proposed. However, the operation speed, power consumption, and error rate of these devices are incompatible with complementary metal−oxide−semiconductor (CMOS) logic, and moreover, cascading of the devices is difficult. Herein, instead, a new voltage-dominated magnetic logic-memory device is proposed, with switching time of 300 ps and power consumption of 150 fJ, representing ≈10 times improvement compared with CMOS logic on the same scale. The device has a reliable output ratio of >3000%, a low working magnetic field of <10 mT, and a low error rate of ≈10−7. Moreover, complex logic operations, such as XOR gates and a full adder, can be realized using this device via cascading. As a result of these advantages, the magnetic logic-memory device is well suited for practical applications.
To solve the von Neumann performance bottleneck, many kinds of magnetic logic devices are proposed. However, the operation speed, power consumption, and error rate of these devices are incompatible with complementary metal−oxide−semiconductor (CMOS) logic, and moreover, cascading of the devices is difficult. Herein, instead, a new voltage‐dominated magnetic logic‐memory device is proposed, with switching time of 300 ps and power consumption of 150 fJ, representing ≈10 times improvement compared with CMOS logic on the same scale. The device has a reliable output ratio of >3000%, a low working magnetic field of <10 mT, and a low error rate of ≈10−7. Moreover, complex logic operations, such as XOR gates and a full adder, can be realized using this device via cascading. As a result of these advantages, the magnetic logic‐memory device is well suited for practical applications. In the voltage‐dominated magnetic logic‐memory device, by coupling the anomalous Hall effect in magnetic materials and the voltage‐controlled negative resistance (n‐type NDR), four basic Boolean logic operations can be programmed by magnetic bit at room temperature with excellent high‐frequency performance (switching time = 0.3 ns). In addition, complex logic operations (XOR and full adder) can be performed by cascade.
Author Pu, Yuchen
Mou, Hongming
Zhang, Xixiang
Zhang, Xiaozhong
Lu, Ziyao
Author_xml – sequence: 1
  givenname: Yuchen
  surname: Pu
  fullname: Pu, Yuchen
  organization: Tsinghua University
– sequence: 2
  givenname: Ziyao
  surname: Lu
  fullname: Lu, Ziyao
  organization: Tsinghua University
– sequence: 3
  givenname: Hongming
  surname: Mou
  fullname: Mou, Hongming
  organization: Tsinghua University
– sequence: 4
  givenname: Xixiang
  surname: Zhang
  fullname: Zhang, Xixiang
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 5
  givenname: Xiaozhong
  orcidid: 0000-0002-6998-8243
  surname: Zhang
  fullname: Zhang, Xiaozhong
  email: xzzhang@tsinghua.edu.cn
  organization: Tsinghua University
BookMark eNqFUE1LAzEQDVJBrV49L3huzUw2SfdY6lehouAHeArTbFK2rJua3VJ68yf4G_0lbltRb55m3vDem8c7Yp0qVI6xU-B94BzPqajXfeTYApB6jx2iSnkvlUp3_uwH7KSu57wVgAaO-pANn8omkqe6SajKky0qw-rz_eM-rFxMnkPZ0My1-CK8FhU1Lk9uaVa5prDJJMwKe8z2PZW1O_meXfZ0dfk4uulN7q7Ho-GkZ4UUuueEt6g0ghBAamotOskdShIePGUe_SBXCE4qVFlu0UqONhNTrV2ugKzosvHONw80N4tYvFJcm0CF2R5CnBmKbarSGSkFAfdgwUOKAgceIcu404OpgExkrdfZzmsRw9vS1Y2Zh2Ws2vgGlVJth4N0w-rvWDaGuo7O_3wFbjatm03r5qf1VpDtBKuidOt_2GY4fnj51X4Ba7qH1A
CitedBy_id crossref_primary_10_1109_LMAG_2022_3146132
crossref_primary_10_1007_s12613_024_2855_2
Cites_doi 10.1002/adfm.201402955
10.1002/adma.201605027
10.1109/TCS.1985.1085599
10.1109/TED.2020.2978085
10.1109/TC.2018.2858251
10.1038/s41467-018-08181-y
10.1002/aelm.201800782
10.1002/cta.2627
10.1038/nmat4886
10.1109/LED.2020.2987211
10.1038/nnano.2016.84
10.1063/1.99886
10.1145/359576.359579
10.1038/s41565-019-0607-7
10.1038/s41467-018-08274-8
10.4028/www.scientific.net/AMR.854.89
10.1109/LED.2019.2932479
10.1002/adfm.201807282
10.1038/nnano.2015.18
10.1063/5.0013301
10.1126/science.282.5394.1660
10.1126/science.1218197
10.1142/S2010324712400024
10.1109/MDT.2005.134
10.1109/TED.2019.2955360
10.1038/s41586-020-2061-y
10.1063/1.4902443
10.1063/1.3694270
10.1126/science.1108813
10.1021/acsaelm.0c00318
10.1038/nature10309
ContentType Journal Article
Copyright 2022 The Authors. Advanced Intelligent Systems published by Wiley‐VCH GmbH
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Advanced Intelligent Systems published by Wiley‐VCH GmbH
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1002/aisy.202100157
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Free Archive
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2640-4567
EndPage n/a
ExternalDocumentID oai_doaj_org_article_553a10f1c1f142328f21990e78b31939
10_1002_aisy_202100157
AISY202100157
Genre article
GrantInformation_xml – fundername: National Science Foundation of China
  funderid: 11674190
– fundername: National Key RD Program of China
  funderid: 2017YFA0206202
GroupedDBID 0R~
1OC
24P
AAFWJ
AAHHS
ACCFJ
ACXQS
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AFPKN
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
ARCSS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
M~E
OK1
PIMPY
WIN
AAYXX
CITATION
ITC
8FE
8FG
ABUWG
AZQEC
DWQXO
P62
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c3537-e3fc26721331a6bcc2e50e25a3f1fa9f2f8d621e56269dc2c502c93b77ed61ac3
IEDL.DBID DOA
ISSN 2640-4567
IngestDate Tue Oct 22 14:52:35 EDT 2024
Thu Oct 10 18:35:36 EDT 2024
Thu Sep 26 19:49:18 EDT 2024
Sat Aug 24 00:56:26 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3537-e3fc26721331a6bcc2e50e25a3f1fa9f2f8d621e56269dc2c502c93b77ed61ac3
ORCID 0000-0002-6998-8243
OpenAccessLink https://doaj.org/article/553a10f1c1f142328f21990e78b31939
PQID 2666001849
PQPubID 5064933
PageCount 6
ParticipantIDs doaj_primary_oai_doaj_org_article_553a10f1c1f142328f21990e78b31939
proquest_journals_2666001849
crossref_primary_10_1002_aisy_202100157
wiley_primary_10_1002_aisy_202100157_AISY202100157
PublicationCentury 2000
PublicationDate May 2022
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced intelligent systems
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2017 2019; 16 40
2012; 100
2019; 5
2020; 41
2012 2018; 02
2019; 10
1978 2005; 21 22
2015; 10
2019 2020; 29 2
2020; 15
2017; 29
2016 2019; 11 10
2014; 105
2015; 25
2019; 47
2012 2011; 336 476
1988 2020; 53 67
2020; 117
2018
2020; 579
2005; 309
2016
1985; 32
2013 2017 2020 2019; 854 67 68
1998; 282
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_11_2
e_1_2_9_12_1
e_1_2_9_13_3
e_1_2_9_15_1
e_1_2_9_13_2
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_13_4
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_22_2
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_6_2
e_1_2_9_7_1
e_1_2_9_5_2
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_2_2
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_25_2
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_26_2
References_xml – volume: 32
  start-page: 46
  year: 1985
  publication-title: IEEE Trans. Circuits Syst.
– volume: 579
  start-page: 214
  year: 2020
  publication-title: Nature
– volume: 15
  start-page: 111
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 02
  start-page: 1240002
  year: 2012 2018
  publication-title: Spin
– volume: 854 67 68
  start-page: 89 1972 1159
  year: 2013 2017 2020 2019
  publication-title: Adv. Mater. Res. IEEE Trans. Electron Devices IEEE Trans. Comput.
– volume: 47
  start-page: 917
  year: 2019
  publication-title: Int. J. Circuit Theory Appl.
– volume: 16 40
  start-page: 712 1554
  year: 2017 2019
  publication-title: Nat. Mater. IEEE Electron Device Lett.
– volume: 10
  start-page: 248
  year: 2019
  publication-title: Nat. Commun.
– volume: 100
  start-page: 132408
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 336 476
  start-page: 555 189
  year: 2012 2011
  publication-title: Science Nature
– volume: 117
  start-page: 022407
  year: 2020
  publication-title: Appl. Phys. Lett.
– volume: 41
  start-page: 928
  year: 2020
  publication-title: IEEE Electron Device Lett.
– year: 2016
– year: 2018
– volume: 53 67
  start-page: 385 75
  year: 1988 2020
  publication-title: Appl. Phys. Lett. IEEE Trans. Electron Devices
– volume: 309
  start-page: 1688
  year: 2005
  publication-title: Science
– volume: 29
  start-page: 1605027
  year: 2017
  publication-title: Adv. Mater.
– volume: 11 10
  start-page: 758 233
  year: 2016 2019
  publication-title: Nat. Nanotechnol. Nat. Commun.
– volume: 29 2
  start-page: 1807282 2375
  year: 2019 2020
  publication-title: Adv. Funct. Mater. ACS Appl. Electron. Mater.
– volume: 25
  start-page: 158
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 1800782
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 282
  start-page: 1660
  year: 1998
  publication-title: Science
– volume: 105
  start-page: 212402
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 21 22
  start-page: 613 556
  year: 1978 2005
  publication-title: Commun. ACM IEEE Design Test Comput.
– volume: 10
  start-page: 333
  year: 2015
  publication-title: Nat. Nanotechnol.
– ident: e_1_2_9_4_1
  doi: 10.1002/adfm.201402955
– ident: e_1_2_9_5_2
– ident: e_1_2_9_16_1
  doi: 10.1002/adma.201605027
– ident: e_1_2_9_19_1
  doi: 10.1109/TCS.1985.1085599
– ident: e_1_2_9_13_3
  doi: 10.1109/TED.2020.2978085
– ident: e_1_2_9_13_4
  doi: 10.1109/TC.2018.2858251
– ident: e_1_2_9_26_2
  doi: 10.1038/s41467-018-08181-y
– ident: e_1_2_9_12_1
  doi: 10.1002/aelm.201800782
– ident: e_1_2_9_17_1
– ident: e_1_2_9_21_1
  doi: 10.1002/cta.2627
– ident: e_1_2_9_6_1
  doi: 10.1038/nmat4886
– ident: e_1_2_9_14_1
  doi: 10.1109/LED.2020.2987211
– ident: e_1_2_9_26_1
  doi: 10.1038/nnano.2016.84
– ident: e_1_2_9_25_1
  doi: 10.1063/1.99886
– ident: e_1_2_9_2_1
  doi: 10.1145/359576.359579
– ident: e_1_2_9_20_1
  doi: 10.1038/s41565-019-0607-7
– ident: e_1_2_9_7_1
  doi: 10.1038/s41467-018-08274-8
– ident: e_1_2_9_13_1
  doi: 10.4028/www.scientific.net/AMR.854.89
– ident: e_1_2_9_6_2
  doi: 10.1109/LED.2019.2932479
– ident: e_1_2_9_11_1
  doi: 10.1002/adfm.201807282
– ident: e_1_2_9_8_1
  doi: 10.1038/nnano.2015.18
– ident: e_1_2_9_15_1
  doi: 10.1063/5.0013301
– ident: e_1_2_9_3_1
  doi: 10.1126/science.282.5394.1660
– ident: e_1_2_9_22_1
  doi: 10.1126/science.1218197
– ident: e_1_2_9_5_1
  doi: 10.1142/S2010324712400024
– ident: e_1_2_9_2_2
  doi: 10.1109/MDT.2005.134
– ident: e_1_2_9_25_2
  doi: 10.1109/TED.2019.2955360
– ident: e_1_2_9_18_1
– ident: e_1_2_9_10_1
  doi: 10.1038/s41586-020-2061-y
– ident: e_1_2_9_24_1
  doi: 10.1063/1.4902443
– ident: e_1_2_9_13_2
– ident: e_1_2_9_23_1
  doi: 10.1063/1.3694270
– ident: e_1_2_9_9_1
  doi: 10.1126/science.1108813
– ident: e_1_2_9_11_2
  doi: 10.1021/acsaelm.0c00318
– ident: e_1_2_9_22_2
  doi: 10.1038/nature10309
SSID ssj0002171027
Score 2.2448525
Snippet To solve the von Neumann performance bottleneck, many kinds of magnetic logic devices are proposed. However, the operation speed, power consumption, and error...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Publisher
SubjectTerms CMOS
Diodes
Electric fields
Electric potential
Electrodes
Electromagnetism
Gates (circuits)
Logic
Magnetic fields
magnetic logic
Magnetism
Memory devices
nonvolatile memory
Power consumption
Power management
Voltage
voltage-controlled negative resistance
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3LSsQwFA06s3Ejiorjiy4EV8Ekt0mbhYiPERUUUUd0FZI0EWFodaYi_r1JpzPqRpcppZST5J5zk_tAaFcYXhhtCLYaeHBQ8gIHlQHYSRqsX8ZAQExwvroW54P08pE_tgdu4zascmoTG0NdVDaeke8HIoncnKfy8PUNx65R8Xa1baExj7oseAqkg7rH_eub29kpSxDcgUGzabVGwvb1y_gzuIUs1h6KnPSDjZqi_b-U5k-92hDO2RJabJVicjSZ2mU058oVdDAY1iPt9bhOdFkkzWhYfeCb2OwseaiGdbAP-LSKAS5BSyZX-rmMaYpJ7KlsV9HgrH9_co7bDgjYAocMO_CWieCkAVAtjLXMceIY1-Cp19IznxeCURdEjJCFZZYTZiWYLHOFoNrCGuqUVenWUUKBGq2J9DJNU7DSSGIIOOFsLnWRmx7amyKhXieFLtSkpDFTETM1w6yHjiNQs7digermQTV6Vu16V5yDpsRTSz2Nd8G5D6ZREpflJmx6kD20NYVZtbtmrL7nuIdYA_0_v6KOLu6eZqONv7-5iRZYzF1oohW3UKcevbvtoChqs9Mumy_0hscV
  priority: 102
  providerName: ProQuest
– databaseName: Wiley-Blackwell Open Access Collection
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUKvfSCiijqUopyQOopwvbETnzcUhCtRIXUbgUny3ZshLRKqt0g1Bs_gd_YX8JMdjewJySOzpeiF8_MG8fzhrFD7VXtned5cKAwQanqHFkG5NEI9H6lBA1U4Hz-U59Nih-X6vJZFf9CH2JYcCPL6P01Gbjz86Mn0VB3M_-H-Z0kESFVbrC3JBtD6vmyuBhWWZBwYwSlmmkM_DxHtlCulBu5PFp_xFpk6gX811jnc-7aB5_T92xryRqz8eIzb7M3sdlh48m0m7nk5l3mmjrrR9P27v_9wwW1Psv-tNMOvQWOv7W04QW5ZXburhsqW8yox3L4wCanJ7-Pz_JlR4Q8gIIyj5CC1Ji0AQinfQgyKh6lcpBEcibJVNVaioikRps6yKC4DAZ8WcZaCxdgl202bRM_skyA8M5xk0xRFBCMN9xziDqGyri68iP2ZYWG_bsQvrALiWNpCTc74DZiXwms4SoSrO4PtLNru5z_VilwgicRRBL0b7hK6CoNj2Xl0QmAGbH9FdR2aUVzi-SB-FhV4GnZw__Cq9jx919Xw2jvNTd9Yu8kVTj0exr32WY3u42fkXd0_qCfWo_C6M7J
  priority: 102
  providerName: Wiley-Blackwell
Title Ultrafast and Ultralow‐Power Voltage‐Dominated Magnetic Logic
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faisy.202100157
https://www.proquest.com/docview/2666001849
https://doaj.org/article/553a10f1c1f142328f21990e78b31939
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BThsxELUovXBBrSgikEZ7QOppFduz9q6PgSZApaAICAony_baqFKUoGRRxQXxCf3GfknHu0mUnrj0Yml292A92zNvtJ43hJxKK0prLE2dAYEJSlGmyDIg9Yqh98s5SIgFzsNreTnOfkzEZKvVV7wT1sgDN8B1hQDDaGCOBRZ_KhYBz5iiPi8s7h5oSveo2kqmog9Goo2RM1-rNFLeNT-XL5gO8qg5FGPRVhSqxfr_YZjbPLUONINPZH_FEJNeM7PPZMfPDkhvPK0WJphllWDqn9TWdP7rz9vvUWxzltzPpxV6BrS_z-PlFuSRydA8zmKJYhL7KbsvZDzo351fpqvuB6kDAXnqITguMUEDYEZa57gX1HNhILBgVOChKCVnHgmMVKXjTlDuFNg896VkxsEh2Z3NZ_6IJAyYNYaqoLIsA6esopaCl94VypSFbZFvazT0UyNyoRs5Y64jbnqDW4ucRbA2X0Vx6voBLpleLZl-b8lapL2GWq9OzFIjUYjcq8jwNa_hf2cqund1-7Cxjv_HxE7IHo_VDfV9xjbZrRbP_ityjsp2yAeejXAsBhcd8vGsfz266dRbDsfha_8vbyLUgw
link.rule.ids 315,783,787,867,2109,11574,12777,21400,27936,27937,33385,33756,43612,43817,46064,46488,50826,50935,74363,74630
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Na9wwEBVtcmgvIaUt3eajPhR6EpE0lmwdQsgnmza7hDZb0pOQZCkUFjvZdQj599F4vdv00h5ljDEjad4baeYNIZ-Vk5WzjlFvQaYApaxoYhlAg-bJ-xUCFGCB82ishpP867W87g_c5n1a5dIndo66ajyeke8lIEFsLnN9cHtHsWsU3q72LTReknWUqkrB1_rR6fjy--qUJRHuhKDFUq2RiT37e_6YwkKB2kOISc_QqBPt_4tpPuerHeCcbZKNnilmh4upfUNehPot2Z9M25mNdt5mtq6ybjRtHuglNjvLfjbTNvkHetJggkviktnI3tRYpphhT2X_jkzOTq-Oh7TvgEA9SChogOiFSkEaALfKeS-CZEFIC5FHq6OIZaUED4nEKF154SUTXoMrilApbj28J2t1U4cPJOPAnbVMR53nOXjtNHMMggq-1LYq3YB8WVrC3C6ELsxC0lgYtJlZ2WxAjtBQq7dQoLp70MxuTL_ejZRgOYvc88jxLriMyTVqForSpU0PekC2l2Y2_a6Zmz9zPCCiM_1_fsUcnv_4tRp9_Pc3P5FXw6vRhbk4H3_bIq8F1jF0mYvbZK2d3YedxC5at9svoSeOacoP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1RaxQxEB70CuJLUVS8WnUfBJ_CJZlNdvMg0toerdrjUE_qU0iySRGO3fZuRfz3Jnu5s77oY5ZlWSaT7_smmcwAvJJWNNZYSpxBEQOUuiFRZSDxikX0qzhKTBecL2bybFG-vxSXOf9pndMqt5g4AHXTubRHPolEkri5LtUk5LSI-cn07fUNSR2k0klrbqdxF_aqUiIdwd7x6Wz-abfjEsV3ZNNqW7mR8on5vv4VQ0Se6hAlfrrFTEMB_79U523tOpDP9AHsZ9VYHG2m-SHc8e0jeLNY9isTzLovTNsUw2jZ_STz1Pis-Not-4gV5KRLyS5RVxYX5qpNVxaL1F_ZPYbF9PTLuzOSuyEQhwIr4jE4LmPAhsiMtM5xL6jnwmBgwajAQ91IznwUNFI1jjtBuVNoq8o3khmHT2DUdq1_CgVDZo2hKqiyLNEpq6il6KV3tTJNbcfwemsJfb0peqE35Y25TjbTO5uN4TgZavdWKlY9POhWVzr7vhYCDaOBORZYOheuQ4RJRX1V2wgAqMZwuDWzzitorf_M9xj4YPr__Io-Ov_8bTc6-Pc3X8K96D364_nswzO4z9OVhiGJ8RBG_eqHfx6FRm9fZA_6DQKxzj0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrafast+and+Ultralow%E2%80%90Power+Voltage%E2%80%90Dominated+Magnetic+Logic&rft.jtitle=Advanced+intelligent+systems&rft.au=Yuchen+Pu&rft.au=Ziyao+Lu&rft.au=Hongming+Mou&rft.au=Xixiang+Zhang&rft.date=2022-05-01&rft.pub=Wiley&rft.eissn=2640-4567&rft.volume=4&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faisy.202100157&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_553a10f1c1f142328f21990e78b31939
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2640-4567&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2640-4567&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2640-4567&client=summon