Detection of Talaromyces macrosporus and Talaromyces trachyspermus by a PCR assay targeting the hydrophobin gene

Talaromyces species are typical fungi capable of producing the heat‐resistant ascospores responsible for the spoilage of processed food products. Hydrophobins, which are unique to fungi, are small secreted proteins that form amphipathic layers on the outer surface of fungal cell walls. In this study...

Full description

Saved in:
Bibliographic Details
Published inLetters in applied microbiology Vol. 68; no. 5; pp. 415 - 422
Main Authors Yamashita, S., Nakagawa, H., Sakaguchi, T., Arima, T‐H., Kikoku, Y.
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Talaromyces species are typical fungi capable of producing the heat‐resistant ascospores responsible for the spoilage of processed food products. Hydrophobins, which are unique to fungi, are small secreted proteins that form amphipathic layers on the outer surface of fungal cell walls. In this study, species‐specific primer sets for detecting and identifying Talaromyces macrosporus and Talaromyces trachyspermus were designed based on hydrophobin gene sequences. A conventional polymerase chain reaction (PCR) assay using these primer sets produced species‐specific amplicons for T. macrosporus and T. trachyspermus. The detection limit for each primer set was 100 pg template DNA. This assay also detected fungal DNA extracted from blueberries inoculated with T. macrosporus. Other heat‐resistant fungi, including Byssochlamys, Neosartorya and Talaromyces species, which cause food spoilage, were not detected in PCR amplifications with these primer sets. Furthermore, a conventional PCR assay using a crude DNA extract as the template also yielded amplicons specific to T. macrosporus and T. trachyspermus. The simple and rapid PCR assay described herein is highly species‐specific and can reliably detect T. macrosporus and T. trachyspermus, suggesting it may be relevant for the food and beverage industry. Significance and Impact of the Study The heat‐resistant ascospores of Talaromyces macrosporus and Talaromyces trachyspermus are responsible for food spoilage after pasteurization. Traditional methods for detecting fungal contamination based on morphological characteristics are time‐consuming and exhibit low sensitivity and specificity. In this study, a conventional polymerase chain reaction (PCR) assay based on hydrophobin gene sequences was developed for the specific detection of T. macrosporus and T. trachyspermus. This detection method was simple, rapid and highly specific. These results suggest that the conventional PCR assay developed in this study may be useful for detecting T. macrosporus and T. trachyspermus in raw materials and processed food products. Significance and Impact of the Study: The heat‐resistant ascospores of Talaromyces macrosporus and Talaromyces trachyspermus are responsible for food spoilage after pasteurization. Traditional methods for detecting fungal contamination based on morphological characteristics are time‐consuming and exhibit low sensitivity and specificity. In this study, a conventional polymerase chain reaction (PCR) assay based on hydrophobin gene sequences was developed for the specific detection of T. macrosporus and T. trachyspermus. This detection method was simple, rapid and highly specific. These results suggest that the conventional PCR assay developed in this study may be useful for detecting T. macrosporus and T. trachyspermus in raw materials and processed food products.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0266-8254
1472-765X
DOI:10.1111/lam.13116