Six-Month Urinary CCL2 and CXCL10 Levels Predict Long-term Renal Allograft Outcome

Early prognostic markers that identify high-risk patients could lead to increased surveillance, personalized immunosuppression, and improved long-term outcomes. The goal of this study was to validate 6-month urinary chemokine ligand 2 (CCL2) as a noninvasive predictor of long-term outcomes and compa...

Full description

Saved in:
Bibliographic Details
Published inTransplantation Vol. 100; no. 9; p. 1988
Main Authors Hirt-Minkowski, Patricia, Rush, David N, Gao, Ang, Hopfer, Helmut, Wiebe, Chris, Nickerson, Peter W, Schaub, Stefan, Ho, Julie
Format Journal Article
LanguageEnglish
Published United States 01.09.2016
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Early prognostic markers that identify high-risk patients could lead to increased surveillance, personalized immunosuppression, and improved long-term outcomes. The goal of this study was to validate 6-month urinary chemokine ligand 2 (CCL2) as a noninvasive predictor of long-term outcomes and compare it with 6-month urinary CXCL10. A prospective, observational renal transplant cohort (n = 185; minimum, 5-year follow-up) was evaluated. The primary composite outcome included 1 or more: allograft loss, renal function decline (>20% decrease estimated glomerular filtration rate between 6 months and last follow-up), and biopsy-proven rejection after 6 months. CCL2/CXCL10 are reported in relation to urine creatinine (ng/mmol). Fifty-two patients (52/185, 28%) reached the primary outcome at a median 6.0 years, and their urinary CCL2:Cr was significantly higher compared with patients with stable allograft function (median [interquartile range], 38.6 ng/mmol [19.7-72.5] vs 25.9 ng/mmol [16.1-45.8], P = 0.009). Low urinary CCL2:Cr (≤70.0 ng/mmol) was associated with 88% 5-year event-free survival compared with 50% with high urinary CCL2:Cr (P < 0.0001). In a multivariate Cox-regression model, the only independent predictors of the primary outcome were high CCL2:Cr (hazard ratio [HR], 2.86; 95% confidence interval [95% CI], 1.33-5.73) and CXCL10:Cr (HR, 2.35; 95% CI, 1.23-4.88; both P = 0.009). Urinary CCL2:Cr/CXCL10:Cr area under the curves were 0.62 (P = 0.001)/0.63 (P = 0.03), respectively. Time-to-endpoint analysis according to combined high or low urinary chemokines demonstrates that endpoint-free survival depends on the overall early chemokine burden. This study confirms that urinary CCL2:Cr is an independent predictor of long-term allograft outcomes. Urinary CCL2:Cr/CXCL10:Cr alone have similar prognostic performance, but when both are elevated, this suggests a worse prognosis. Therefore, urinary chemokines may be a useful tool for timely identification of high-risk patients.
ISSN:1534-6080
DOI:10.1097/TP.0000000000001304