miR‐124 promotes neural differentiation in mouse bulge stem cells by repressing Ptbp1 and Sox9

Hair follicle stem cells (HFSCs) are able to differentiate into neurons and glial cells. Distinct microRNAs (miRNAs) regulate the proliferation and differentiation of HFSCs. However, the exact role of miR‐124 in the neural differentiation of HFSCs has not been elucidated. HFSCs were isolated from mo...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular physiology Vol. 234; no. 6; pp. 8941 - 8950
Main Authors Mokabber, Haleh, Najafzadeh, Nowruz, Mohammadzadeh Vardin, Mohammad
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Hair follicle stem cells (HFSCs) are able to differentiate into neurons and glial cells. Distinct microRNAs (miRNAs) regulate the proliferation and differentiation of HFSCs. However, the exact role of miR‐124 in the neural differentiation of HFSCs has not been elucidated. HFSCs were isolated from mouse whisker follicles. miR‐9, let‐7b, and miR‐124, Ptbp1 , and Sox9 expression levels were detected by real‐time polymerase chain reaction (RT‐PCR). The influence of miR‐124 transfection was evaluated using immunostaining. We demonstrated that miR‐124 and let‐7b expression levels were significantly increased after the neural differentiation. Sox9 and Ptbp1 were identified as the target of miR‐124 in the HFSCs. During neural differentiation and miR‐124 mimicking, Ptbp1 and Sox9 levels were decreased. Moreover, the miR‐124 overexpression increased MAP2 (58.43 ± 11.26) and NeuN (48.34 ± 11.15) proteins expression. The results demonstrated that miR‐124 may promote the differentiation of HFSCs into neuronal cells by targeting Sox9 and Ptbp1. miR‐124 and let‐7b are upregulated in hair follicle bulge cells after neural differentiation. Upregulation of miR‐124 triggers neural differentiation. Ptbp1 and Sox9 mRNAs are direct miR‐124 targets during neural differentiation of hair follicle stem cells (HFSCs).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9541
1097-4652
DOI:10.1002/jcp.27563