Experimental investigation of lean-premixed hydrogen combustion instabilities in a can-annular combustion system

Thermoacoustic interactions in a circumferential network of lean-premixed combustors have a substantial impact on engine-level dynamics in a can-annular gas turbine combustion system. Previous experimental and numerical studies have focused on identifying the formation of large-scale interaction pat...

Full description

Saved in:
Bibliographic Details
Published inCombustion and flame Vol. 235; p. 111697
Main Authors Moon, Kihun, Choi, Yongseok, Kim, Kyu Tae
Format Journal Article
LanguageEnglish
Published New York Elsevier Inc 01.01.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Thermoacoustic interactions in a circumferential network of lean-premixed combustors have a substantial impact on engine-level dynamics in a can-annular gas turbine combustion system. Previous experimental and numerical studies have focused on identifying the formation of large-scale interaction patterns and the modal dynamics of multiple eigenmodes. Since those investigations were primarily concerned with low-frequency interactions between adjacent combustors, there are currently no experimental observations that enable decisive discrimination between low- and high-frequency can-annular combustion instabilities. Here, we use pure hydrogen-air flame ensembles to trigger higher acoustic modes in four-coupled lean-premixed combustors, ultimately to understand the potential influence of self-excited instabilities on the spatiotemporal evolution of a can-annular system. The use of lean-premixed hydrogen-air flames enables measurements of previously unidentified phenomena, particularly in association with the excitation of high acoustic modes up to approximately 1.3 kHz. We demonstrate that self-excited standing azimuthal modes can be excited in the annular cross-talk section, particularly when the phase dynamics of the upstream flame tube sections are defined by alternating anti-phase oscillations. In this case, the temporal evolution of the can-annular system is governed by twofold degeneracy, incorporating an alternating push-pull mode in the longitudinal direction and a standing azimuthal mode in the circumferential direction at the same frequency. Based on experimental observations and Helmholtz simulations, we also show that a mixed state of synchronization and desynchronization can arise simultaneously as a result of symmetry breaking. The coexistence of coherent and incoherent motions is observed to be controlled by interactions between two closely spaced, but slightly misaligned, localized in-phase modes; this observation demonstrates experimentally the existence of a chiral state in can-annular thermoacoustics. The present results, for the first time, reveal a variety of phenomena involved in the response of a can-annular combustion system to higher frequency acoustic perturbations.
ISSN:0010-2180
1556-2921
DOI:10.1016/j.combustflame.2021.111697