A chemotactic response facilitates mosquito salivary gland infection by malaria sporozoites

Sporozoite invasion of mosquito salivary glands is critical for malaria transmission to vertebrate hosts. After release into the mosquito hemocoel, the means by which malaria sporozoites locate the salivary glands is unknown. We developed a Matrigel-based in vitro system to observe and analyze the m...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental biology Vol. 208; no. Pt 16; pp. 3211 - 3218
Main Authors Akaki, Mayumi, Dvorak, James A
Format Journal Article
LanguageEnglish
Published England 01.08.2005
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Sporozoite invasion of mosquito salivary glands is critical for malaria transmission to vertebrate hosts. After release into the mosquito hemocoel, the means by which malaria sporozoites locate the salivary glands is unknown. We developed a Matrigel-based in vitro system to observe and analyze the motility of GFP-expressing Plasmodium berghei sporozoites in the presence of salivary gland products of Anopheles stephensi mosquitoes using temperature-controlled, low-light-level video microscopy. Sporozoites moved toward unheated salivary gland homogenate (SGH) but not to SGH that had been heated at 56 degrees C for 30 min. We also investigated the origin of the attracted population. Attraction to SGH was restricted to hemolymph- and oocyst-derived sporozoites; salivary gland-derived sporozoites were not attracted to SGH. These data imply that sporozoites employ a chemotactic response to high molecular mass proteins or carbohydrate-binding proteins to locate salivary glands. This raises the possibility of utilizing anti-chemotactic factors for the development of mosquito transmission blocking agents.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0022-0949
1477-9145
DOI:10.1242/jeb.01756