Robust consensus clustering for identification of expressed genes linked to malignancy of human colorectal carcinoma

Previous studies have been conducted in gene expression profiling to identify groups of genes that characterize the colorectal carcinoma disease. Despite the success of previous attempts to identify groups of genes in the progression of the colorectal carcinoma disease, their methods either require...

Full description

Saved in:
Bibliographic Details
Published inBioinformation Vol. 6; no. 7; pp. 279 - 282
Main Authors Wahyudi, Gatot, Wasito, Ito, Melia, Tisha, Budi, Indra
Format Journal Article
LanguageEnglish
Published Singapore Biomedical Informatics 01.01.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Previous studies have been conducted in gene expression profiling to identify groups of genes that characterize the colorectal carcinoma disease. Despite the success of previous attempts to identify groups of genes in the progression of the colorectal carcinoma disease, their methods either require subjective interpretation of the number of clusters, or lack stability during different runs of the algorithms. All of which limits the usefulness of these methods. In this study, we propose an enhanced algorithm that provides stability and robustness in identifying differentially expressed genes in an expression profile analysis. Our proposed algorithm uses multiple clustering algorithms under the consensus clustering framework. The results of the experiment show that the robustness of our method provides a consistent structure of clusters, similar to the structure found in the previous study. Furthermore, our algorithm outperforms any single clustering algorithms in terms of the cluster quality score.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0973-8894
0973-2063
0973-2063
DOI:10.6026/97320630006279