Distributed Parallel Support Vector Machines in Strongly Connected Networks

In this paper, we propose a distributed parallel support vector machine (DPSVM) training mechanism in a configurable network environment for distributed data mining. The basic idea is to exchange support vectors among a strongly connected network (SCN) so that multiple servers may work concurrently...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural networks Vol. 19; no. 7; pp. 1167 - 1178
Main Authors Yumao Lu, Roychowdhury, V., Vandenberghe, L.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.07.2008
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we propose a distributed parallel support vector machine (DPSVM) training mechanism in a configurable network environment for distributed data mining. The basic idea is to exchange support vectors among a strongly connected network (SCN) so that multiple servers may work concurrently on distributed data set with limited communication cost and fast training speed. The percentage of servers that can work in parallel and the communication overhead may be adjusted through network configuration. The proposed algorithm further speeds up through online implementation and synchronization. We prove that the global optimal classifier can be achieved iteratively over an SCN. Experiments on a real-world data set show that the computing time scales well with the size of the training data for most networks. Numerical results show that a randomly generated SCN may achieve better performance than the state of the art method, cascade SVM, in terms of total training time.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1045-9227
1941-0093
DOI:10.1109/TNN.2007.2000061