Asymmetric Independent-Gate MOSFET SRAM for High Stability

In this paper, the application of an asymmetric independent-gate MOSFET (IG-MOSFET) to the bit-cell structures of the SRAM schemes that were previously proposed using the symmetric IG-MOSFET is analyzed. In addition, a novel SRAM scheme with the asymmetric IG-MOSFET is proposed to improve read stabi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on electron devices Vol. 58; no. 9; pp. 2959 - 2965
Main Authors Mingu Kang, Park, H. K., Wang, J., Yeap, G., Jung, S. O.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.09.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, the application of an asymmetric independent-gate MOSFET (IG-MOSFET) to the bit-cell structures of the SRAM schemes that were previously proposed using the symmetric IG-MOSFET is analyzed. In addition, a novel SRAM scheme with the asymmetric IG-MOSFET is proposed to improve read stability and writeability by controlling the back gates of pass-gate and pull-up transistors. New array architecture is also suggested to prevent read stability degradation in the half-selected cell, where word line is selected but bit line is unselected. The previous SRAMs with IG-MOSFET (IG-SRAMs) fail to simultaneously improve read stability and writeability compared to the SRAM with the tied-gate MOSFET. The proposed IG-SRAM significantly improves both read stability and writeability at the cost of slightly increased bit-cell area and read delay, as compared to the previous IG-SRAMs.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2011.2160180