Querying Labeled for Unlabeled: Cross-Image Semantic Consistency Guided Semi-Supervised Semantic Segmentation

Semi-supervised semantic segmentation aims to learn a semantic segmentation model via limited labeled images and adequate unlabeled images. The key to this task is generating reliable pseudo labels for unlabeled images. Existing methods mainly focus on producing reliable pseudo labels based on the c...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 45; no. 7; pp. 1 - 18
Main Authors Wu, Linshan, Fang, Leyuan, He, Xingxin, He, Min, Ma, Jiayi, Zhong, Zhun
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Semi-supervised semantic segmentation aims to learn a semantic segmentation model via limited labeled images and adequate unlabeled images. The key to this task is generating reliable pseudo labels for unlabeled images. Existing methods mainly focus on producing reliable pseudo labels based on the confidence scores of unlabeled images while largely ignoring the use of labeled images with accurate annotations. In this paper, we propose a Cross-Image Semantic Consistency guided Rectifying (CISC-R) approach for semi-supervised semantic segmentation, which explicitly leverages the labeled images to rectify the generated pseudo labels. Our CISC-R is inspired by the fact that images belonging to the same class have a high pixel-level correspondence. Specifically, given an unlabeled image and its initial pseudo labels, we first query a guiding labeled image that shares the same semantic information with the unlabeled image. Then, we estimate the pixel-level similarity between the unlabeled image and the queried labeled image to form a CISC map, which guides us to achieve a reliable pixel-level rectification for the pseudo labels. Extensive experiments on the PASCAL VOC 2012, Cityscapes, and COCO datasets demonstrate that the proposed CISC-R can significantly improve the quality of the pseudo labels and outperform the state-of-the-art methods. Code is available at https://github.com/Luffy03/CISC-R .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2022.3233584