Structure and thermodynamics of mixed polymeric micelles with crystalline cores: tuning properties via co-assembly
We investigate micelles formed by mixtures of n-alkyl-poly(ethylene oxide) block copolymers, Cn-PEO, with different alkyl block lengths in aqueous solution. This model system has previously been used to shed light on the interplay between exchange kinetics and crystallinity in self-assembling system...
Saved in:
Published in | Soft matter Vol. 15; no. 39; pp. 7777 - 7786 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We investigate micelles formed by mixtures of n-alkyl-poly(ethylene oxide) block copolymers, Cn-PEO, with different alkyl block lengths in aqueous solution. This model system has previously been used to shed light on the interplay between exchange kinetics and crystallinity in self-assembling systems [König et al., Phys. Rev. Lett., 2019, 122, 078001]. Now we report on the structure and thermodynamics of these micelles by combining results from small-angle X-ray scattering, differential scanning calorimetry and volumetric measurements. We show that mixed micelles are formed despite the fact that length-mismatched n-alkanes of similar weights in bulk tend to demix below the crystallization temperature. Instead, the system exhibits similar properties as single-component micelles but with a modulated melting region. Interestingly, the melting point depression due to self-confinement within the micellar core can be approximately described by a generalized Gibbs-Thomson equation, similar to single-component micelles [Zinn et al. Phys. Rev. Lett., 2014, 113, 238305]. Furthermore, we find a novel scaling law for these micelles where, at least for larger n, the aggregation number scales with the third power of the length of the hydrophobic block, Nagg ∝ n3. Possibly, there might be a cross-over from the conventional Nagg ∝ n2 behaviour around n ≈ 19. However, the reason for such a transition as well as the strong n dependence remains a challenge and requires more theoretical work. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1744-683X 1744-6848 |
DOI: | 10.1039/c9sm01452g |