A comparison of regularized logistic regression and random forest machine learning models for daytime diagnosis of obstructive sleep apnea

A major challenge in big and high-dimensional data analysis is related to the classification and prediction of the variables of interest by characterizing the relationships between the characteristic factors and predictors. This study aims to assess the utility of two important machine-learning tech...

Full description

Saved in:
Bibliographic Details
Published inMedical & biological engineering & computing Vol. 58; no. 10; pp. 2517 - 2529
Main Authors Hajipour, Farahnaz, Jozani, Mohammad Jafari, Moussavi, Zahra
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0140-0118
1741-0444
1741-0444
DOI10.1007/s11517-020-02206-9

Cover

Abstract A major challenge in big and high-dimensional data analysis is related to the classification and prediction of the variables of interest by characterizing the relationships between the characteristic factors and predictors. This study aims to assess the utility of two important machine-learning techniques to classify subjects with obstructive sleep apnea (OSA) using their daytime tracheal breathing sounds. We evaluate and compare the performance of the random forest (RF) and regularized logistic regression (LR) as feature selection tools and classification approaches for wakefulness OSA screening. Results show that the RF, which is a low-variance committee-based approach, outperforms the regularized LR in terms of blind-testing accuracy, specificity, and sensitivity with 3.5%, 2.4%, and 3.7% improvement, respectively. However, the regularized LR was found to be faster than the RF and resulted in a more parsimonious model. Consequently, both the RF and regularized LR feature reduction and classification approaches are qualified to be applied for the daytime OSA screening studies, depending on the nature of data and applications’ purposes. Graphical Abstract
AbstractList A major challenge in big and high-dimensional data analysis is related to the classification and prediction of the variables of interest by characterizing the relationships between the characteristic factors and predictors. This study aims to assess the utility of two important machine-learning techniques to classify subjects with obstructive sleep apnea (OSA) using their daytime tracheal breathing sounds. We evaluate and compare the performance of the random forest (RF) and regularized logistic regression (LR) as feature selection tools and classification approaches for wakefulness OSA screening. Results show that the RF, which is a low-variance committee-based approach, outperforms the regularized LR in terms of blind-testing accuracy, specificity, and sensitivity with 3.5%, 2.4%, and 3.7% improvement, respectively. However, the regularized LR was found to be faster than the RF and resulted in a more parsimonious model. Consequently, both the RF and regularized LR feature reduction and classification approaches are qualified to be applied for the daytime OSA screening studies, depending on the nature of data and applications’ purposes.
A major challenge in big and high-dimensional data analysis is related to the classification and prediction of the variables of interest by characterizing the relationships between the characteristic factors and predictors. This study aims to assess the utility of two important machine-learning techniques to classify subjects with obstructive sleep apnea (OSA) using their daytime tracheal breathing sounds. We evaluate and compare the performance of the random forest (RF) and regularized logistic regression (LR) as feature selection tools and classification approaches for wakefulness OSA screening. Results show that the RF, which is a low-variance committee-based approach, outperforms the regularized LR in terms of blind-testing accuracy, specificity, and sensitivity with 3.5%, 2.4%, and 3.7% improvement, respectively. However, the regularized LR was found to be faster than the RF and resulted in a more parsimonious model. Consequently, both the RF and regularized LR feature reduction and classification approaches are qualified to be applied for the daytime OSA screening studies, depending on the nature of data and applications' purposes. Graphical Abstract.A major challenge in big and high-dimensional data analysis is related to the classification and prediction of the variables of interest by characterizing the relationships between the characteristic factors and predictors. This study aims to assess the utility of two important machine-learning techniques to classify subjects with obstructive sleep apnea (OSA) using their daytime tracheal breathing sounds. We evaluate and compare the performance of the random forest (RF) and regularized logistic regression (LR) as feature selection tools and classification approaches for wakefulness OSA screening. Results show that the RF, which is a low-variance committee-based approach, outperforms the regularized LR in terms of blind-testing accuracy, specificity, and sensitivity with 3.5%, 2.4%, and 3.7% improvement, respectively. However, the regularized LR was found to be faster than the RF and resulted in a more parsimonious model. Consequently, both the RF and regularized LR feature reduction and classification approaches are qualified to be applied for the daytime OSA screening studies, depending on the nature of data and applications' purposes. Graphical Abstract.
A major challenge in big and high-dimensional data analysis is related to the classification and prediction of the variables of interest by characterizing the relationships between the characteristic factors and predictors. This study aims to assess the utility of two important machine-learning techniques to classify subjects with obstructive sleep apnea (OSA) using their daytime tracheal breathing sounds. We evaluate and compare the performance of the random forest (RF) and regularized logistic regression (LR) as feature selection tools and classification approaches for wakefulness OSA screening. Results show that the RF, which is a low-variance committee-based approach, outperforms the regularized LR in terms of blind-testing accuracy, specificity, and sensitivity with 3.5%, 2.4%, and 3.7% improvement, respectively. However, the regularized LR was found to be faster than the RF and resulted in a more parsimonious model. Consequently, both the RF and regularized LR feature reduction and classification approaches are qualified to be applied for the daytime OSA screening studies, depending on the nature of data and applications’ purposes. Graphical Abstract
Author Hajipour, Farahnaz
Jozani, Mohammad Jafari
Moussavi, Zahra
Author_xml – sequence: 1
  givenname: Farahnaz
  orcidid: 0000-0002-5531-757X
  surname: Hajipour
  fullname: Hajipour, Farahnaz
  email: Hajipouf@myumanitoba.ca
  organization: Biomedical Engineering Program, University of Manitoba
– sequence: 2
  givenname: Mohammad Jafari
  surname: Jozani
  fullname: Jozani, Mohammad Jafari
  organization: Department of Statistics, University of Manitoba
– sequence: 3
  givenname: Zahra
  surname: Moussavi
  fullname: Moussavi, Zahra
  organization: Biomedical Engineering Program, University of Manitoba, Electrical and Computer Engineering Department, University of Manitoba
BookMark eNp9kc1q3TAQhUVJoTdpX6ArQTbdONWvLS9DaJNCoJvshSyPXQVZcjR2IX2EPnV1ewuFLLKQhOZ8RxrpnJOzlBMQ8pGzK85Y9xk517xrmGB1CNY2_Rty4J3iDVNKnZED46pKnJt35BzxkTHBtVAH8vua-rysrgTMieaJFpj3WLe_YKQxzwG34I_FAoihIi6NtNQpL3TKtbjRxfkfIQGN4EoKaaZLHiHiUaaje97CAnQMbk4ZAx6vyANuZfdb-AkUI8BK3ZrAvSdvJxcRPvxbL8jD1y8PN3fN_ffbbzfX942XWmyN02oQowff9lxw6dsBzOC7ThjNB91Dr5iQDFrmmXFOgzay6nLy2rQajLwgn07HriU_7fUBdgnoIUaXIO9ohZKqU0bptqKXL9DHvJdUm6uUEq0xQspKmRPlS0YsMFkfNrfVz9qKC9FyZo8Z2VNGtmZk_2Zk-2oVL6xrCYsrz6-b5MmEFU4zlP9dveL6A5fgqFE
CitedBy_id crossref_primary_10_1007_s11042_023_17296_4
crossref_primary_10_3389_fenvs_2024_1471599
crossref_primary_10_1007_s13665_024_00361_0
crossref_primary_10_1161_JAHA_122_026987
crossref_primary_10_1007_s11517_024_03020_3
crossref_primary_10_3389_fcimb_2023_1098310
crossref_primary_10_1109_ACCESS_2024_3461164
crossref_primary_10_5937_jpmnt12_50921
crossref_primary_10_3390_healthcare13020181
crossref_primary_10_3389_fneur_2023_1123227
crossref_primary_10_1038_s41598_023_33170_7
crossref_primary_10_1109_ACCESS_2022_3215632
crossref_primary_10_3389_fdata_2024_1353469
crossref_primary_10_3390_diagnostics12010050
crossref_primary_10_1002_bimj_202300171
crossref_primary_10_1142_S0219519421400194
crossref_primary_10_3389_fped_2024_1328209
crossref_primary_10_1016_j_eswa_2023_119799
crossref_primary_10_3390_app12157943
crossref_primary_10_5664_jcsm_10532
crossref_primary_10_1007_s00034_021_01889_1
crossref_primary_10_1111_pai_14032
Cites_doi 10.1016/j.joms.2013.12.006
10.1016/j.aca.2011.07.027
10.1053/smrv.2002.0238
10.1121/1.4725761
10.1093/sleep/28.4.499
10.1007/s10439-016-1720-5
10.1080/12460125.2014.888848
10.4065/mcp.2010.0810
10.1023/A:1010933404324
10.1164/ajrccm.152.5.7582313
10.1080/12460125.2015.994290
10.1164/rccm.200208-866OC
10.1093/eurheartj/ehw302
10.1111/j.1467-9868.2011.00771.x
10.1183/20734735.008817
10.1007/s10439-011-0456-5
10.1007/s10916-018-1151-y
10.1007/978-1-4614-7138-7
10.1056/NEJMp1302941
10.1109/EMBC.2014.6944558
10.1109/MEMB.2007.289122
10.1007/s11517-019-02052-4
10.1007/978-0-387-84858-7
10.1093/biomet/73.3.751
ContentType Journal Article
Copyright International Federation for Medical and Biological Engineering 2020
International Federation for Medical and Biological Engineering 2020.
Copyright_xml – notice: International Federation for Medical and Biological Engineering 2020
– notice: International Federation for Medical and Biological Engineering 2020.
DBID AAYXX
CITATION
3V.
7RV
7SC
7TB
7TS
7WY
7WZ
7X7
7XB
87Z
88A
88E
88I
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
K9.
KB0
L.-
L7M
LK8
L~C
L~D
M0C
M0N
M0S
M1P
M2P
M7P
M7Z
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s11517-020-02206-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
Biochemistry Abstracts 1
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
Physical Education Index
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest One Business (Alumni)
Biochemistry Abstracts 1
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Business Collection (Alumni Edition)
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1741-0444
EndPage 2529
ExternalDocumentID 10_1007_s11517_020_02206_9
GrantInformation_xml – fundername: Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada
  grantid: RGPIN-2017-05484
  funderid: http://dx.doi.org/10.13039/501100002790
GroupedDBID ---
-4W
-5B
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.55
.86
.DC
.GJ
.VR
04C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
36B
3V.
4.4
406
408
40D
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
7RV
7WY
7X7
88A
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBNA
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBA
EBD
EBLON
EBR
EBS
EBU
ECS
EDO
EHE
EIHBH
EIOEI
EJD
EMB
EMK
EMOBN
EPL
ESBYG
EST
ESX
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
L7B
LAI
LK8
LLZTM
M0C
M0L
M0N
M1P
M2P
M43
M4Y
M7P
MA-
MK~
ML0
ML~
N2Q
N9A
NAPCQ
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RXW
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBY
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TAE
TH9
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
WOW
X7M
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z82
Z83
Z87
Z88
Z8M
Z8O
Z8R
Z8T
Z8V
Z8W
Z91
Z92
ZGI
ZL0
ZMTXR
ZOVNA
ZXP
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7TB
7TS
7XB
8AL
8FD
8FK
ABRTQ
FR3
JQ2
K9.
L.-
L7M
L~C
L~D
M7Z
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c352t-a54b2dcec691213c6be8bc772851b59e940230e60c08aa5e5838bc3fc5865e83
IEDL.DBID 8FG
ISSN 0140-0118
1741-0444
IngestDate Thu Sep 04 23:07:17 EDT 2025
Fri Jul 25 18:56:47 EDT 2025
Tue Jul 01 02:58:31 EDT 2025
Thu Apr 24 23:06:13 EDT 2025
Fri Feb 21 02:31:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Regularized logistic regression
Feature selection
Random forest
Obstructive sleep apnea
Classification
LASSO
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-a54b2dcec691213c6be8bc772851b59e940230e60c08aa5e5838bc3fc5865e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0002-5531-757X
PQID 2442688233
PQPubID 54161
PageCount 13
ParticipantIDs proquest_miscellaneous_2434748456
proquest_journals_2442688233
crossref_citationtrail_10_1007_s11517_020_02206_9
crossref_primary_10_1007_s11517_020_02206_9
springer_journals_10_1007_s11517_020_02206_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201000
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 20201000
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Medical & biological engineering & computing
PublicationTitleAbbrev Med Biol Eng Comput
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Kushida, Littner, Morgenthaler (CR12) 2005; 28
Sola-Soler, Fiz, Torres, Jane (CR18) 2014; 2014
Power (CR1) 2014; 23
Ludwig, Feuerriegel, Neumann (CR9) 2015; 24
Memtsoudis, Besculides, Mazumdar (CR13) 2013; 368
Tibshirani (CR5) 2011; 73
Hastie, Tibshirani, Friedman (CR4) 2009
Yadollahi, Moussavi (CR21) 2007; 26
Schwab, Gupta, Gefter (CR26) 1995; 152
Finkelstein, Wolf, Nachmani (CR24) 2014; 72
Ayappa, Rapoport (CR17) 2003; 7
Zhao (CR10) 2019; 43
Goldstein, Navar, Carter (CR8) 2017; 38
James, Witten, Hastie, Tibshirani (CR2) 2013
Priftis, Hadjileontiadis, Everard (CR15) 2018
Breiman (CR7) 2001; 45
Montazeri, Giannouli, Moussavi (CR20) 2012; 40
Bechwati, Avis, Bull (CR27) 2012; 132
CR23
CR22
Penzel, Sabil (CR16) 2017; 13
Elwali, Moussavi (CR19) 2017; 45
Hajipour, Jafari Jozani, Elwali, Moussavi (CR6) 2019; 57
Guyon, Elisseeff (CR3) 2003; 3
(CR14) 2016
Schwab, Pasirstein, Pierson (CR25) 2003; 168
Park, Ramar, Olson (CR11) 2011; 86
N Ludwig (2206_CR9) 2015; 24
SG Memtsoudis (2206_CR13) 2013; 368
G James (2206_CR2) 2013
I Guyon (2206_CR3) 2003; 3
American Academy of Sleep Medicine (2206_CR14) 2016
CA Kushida (2206_CR12) 2005; 28
J Sola-Soler (2206_CR18) 2014; 2014
JG Park (2206_CR11) 2011; 86
2206_CR23
2206_CR22
F Hajipour (2206_CR6) 2019; 57
Y Finkelstein (2206_CR24) 2014; 72
T Hastie (2206_CR4) 2009
A Elwali (2206_CR19) 2017; 45
B Zhao (2206_CR10) 2019; 43
T Penzel (2206_CR16) 2017; 13
A Yadollahi (2206_CR21) 2007; 26
RJ Schwab (2206_CR25) 2003; 168
F Bechwati (2206_CR27) 2012; 132
KN Priftis (2206_CR15) 2018
I Ayappa (2206_CR17) 2003; 7
DJ Power (2206_CR1) 2014; 23
BA Goldstein (2206_CR8) 2017; 38
L Breiman (2206_CR7) 2001; 45
A Montazeri (2206_CR20) 2012; 40
R Tibshirani (2206_CR5) 2011; 73
RJ Schwab (2206_CR26) 1995; 152
References_xml – ident: CR22
– volume: 72
  start-page: 1350
  year: 2014
  end-page: 1372
  ident: CR24
  article-title: Velopharyngeal anatomy in patients with obstructive sleep apnea versus normal subjects
  publication-title: J Oral Maxillofac Surg
  doi: 10.1016/j.joms.2013.12.006
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: CR3
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
  doi: 10.1016/j.aca.2011.07.027
– volume: 7
  start-page: 9
  year: 2003
  end-page: 33
  ident: CR17
  article-title: The upper airway in sleep: physiology of the pharynx
  publication-title: Sleep Med Rev
  doi: 10.1053/smrv.2002.0238
– volume: 132
  start-page: 239
  year: 2012
  end-page: 248
  ident: CR27
  article-title: Low frequency sound propagation in activated carbon
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.4725761
– volume: 28
  start-page: 499
  year: 2005
  end-page: 523
  ident: CR12
  article-title: Practice parameters for the indications for polysomnography and related procedures: an update for 2005
  publication-title: Sleep
  doi: 10.1093/sleep/28.4.499
– volume: 45
  start-page: 839
  year: 2017
  end-page: 850
  ident: CR19
  article-title: Obstructive sleep apnea screening and airway structure characterization during wakefulness using tracheal breathing sounds
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-016-1720-5
– volume: 23
  start-page: 222
  year: 2014
  end-page: 228
  ident: CR1
  article-title: Using ‘Big Data’ for analytics and decision support
  publication-title: J Decis Syst
  doi: 10.1080/12460125.2014.888848
– volume: 86
  start-page: 549
  year: 2011
  end-page: 555
  ident: CR11
  article-title: Updates on definition, consequences, and management of obstructive sleep apnea
  publication-title: Mayo Clin Proc
  doi: 10.4065/mcp.2010.0810
– year: 2016
  ident: CR14
  publication-title: Hidden health crisis costing America billions: underdiagnosing and undertreating obstructive sleep apnea draining healthcare system
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: CR7
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 152
  start-page: 1673
  year: 1995
  end-page: 1689
  ident: CR26
  article-title: Upper airway and soft tissue anatomy in normal subjects and patients with sleep-disordered breathing. Significance of the lateral pharyngeal walls
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/ajrccm.152.5.7582313
– volume: 24
  start-page: 19
  year: 2015
  end-page: 36
  ident: CR9
  article-title: Putting Big Data analytics to work: feature selection for forecasting electricity prices using the LASSO and random forests
  publication-title: J Decis Syst
  doi: 10.1080/12460125.2015.994290
– volume: 168
  start-page: 522
  year: 2003
  end-page: 530
  ident: CR25
  article-title: Identification of upper airway anatomic risk factors for obstructive sleep apnea with volumetric magnetic resonance imaging
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.200208-866OC
– volume: 38
  start-page: 1805
  year: 2017
  end-page: 1814
  ident: CR8
  article-title: Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehw302
– year: 2018
  ident: CR15
  publication-title: Breath sounds from basic science to clinical practice
– volume: 73
  start-page: 273
  year: 2011
  end-page: 282
  ident: CR5
  article-title: Regression shrinkage and selection via the lasso: a retrospective
  publication-title: J R Stat Soc Ser B (Stat Methodol)
  doi: 10.1111/j.1467-9868.2011.00771.x
– ident: CR23
– volume: 13
  start-page: e37
  year: 2017
  end-page: e45
  ident: CR16
  article-title: The use of tracheal sounds for the diagnosis of sleep apnoea
  publication-title: Breathe
  doi: 10.1183/20734735.008817
– volume: 40
  start-page: 916
  year: 2012
  end-page: 924
  ident: CR20
  article-title: Assessment of obstructive sleep apnea and its severity during wakefulness
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-011-0456-5
– volume: 43
  start-page: 32
  year: 2019
  ident: CR10
  article-title: A machine learning approach to predicting case duration for Robot-assisted surgery
  publication-title: J Med Syst
  doi: 10.1007/s10916-018-1151-y
– year: 2013
  ident: CR2
  publication-title: An introduction to statistical learning
  doi: 10.1007/978-1-4614-7138-7
– volume: 368
  start-page: 2352
  year: 2013
  end-page: 2353
  ident: CR13
  article-title: A rude awakening—the perioperative sleep apnea epidemic
  publication-title: N Engl J Med
  doi: 10.1056/NEJMp1302941
– volume: 2014
  start-page: 4232
  year: 2014
  end-page: 4235
  ident: CR18
  article-title: Identification of obstructive sleep apnea patients from tracheal breath sound analysis during wakefulness in polysomnographic studies
  publication-title: Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf
  doi: 10.1109/EMBC.2014.6944558
– volume: 26
  start-page: 56
  year: 2007
  end-page: 61
  ident: CR21
  article-title: Acoustical flow estimation: review and validation
  publication-title: IEEE Eng Med Biol Mag
  doi: 10.1109/MEMB.2007.289122
– volume: 57
  start-page: 2641
  year: 2019
  end-page: 2655
  ident: CR6
  article-title: Regularized logistic regression for obstructive sleep apnea screening during wakefulness using daytime tracheal breathing sounds and anthropometric information
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-019-02052-4
– year: 2009
  ident: CR4
  publication-title: The elements of statistical learning
  doi: 10.1007/978-0-387-84858-7
– volume: 38
  start-page: 1805
  year: 2017
  ident: 2206_CR8
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehw302
– volume: 2014
  start-page: 4232
  year: 2014
  ident: 2206_CR18
  publication-title: Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf
  doi: 10.1109/EMBC.2014.6944558
– volume: 86
  start-page: 549
  year: 2011
  ident: 2206_CR11
  publication-title: Mayo Clin Proc
  doi: 10.4065/mcp.2010.0810
– volume: 28
  start-page: 499
  year: 2005
  ident: 2206_CR12
  publication-title: Sleep
  doi: 10.1093/sleep/28.4.499
– volume: 152
  start-page: 1673
  year: 1995
  ident: 2206_CR26
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/ajrccm.152.5.7582313
– volume: 73
  start-page: 273
  year: 2011
  ident: 2206_CR5
  publication-title: J R Stat Soc Ser B (Stat Methodol)
  doi: 10.1111/j.1467-9868.2011.00771.x
– volume: 43
  start-page: 32
  year: 2019
  ident: 2206_CR10
  publication-title: J Med Syst
  doi: 10.1007/s10916-018-1151-y
– volume: 23
  start-page: 222
  year: 2014
  ident: 2206_CR1
  publication-title: J Decis Syst
  doi: 10.1080/12460125.2014.888848
– volume-title: The elements of statistical learning
  year: 2009
  ident: 2206_CR4
  doi: 10.1007/978-0-387-84858-7
– volume: 368
  start-page: 2352
  year: 2013
  ident: 2206_CR13
  publication-title: N Engl J Med
  doi: 10.1056/NEJMp1302941
– volume: 3
  start-page: 1157
  year: 2003
  ident: 2206_CR3
  publication-title: J Mach Learn Res
  doi: 10.1016/j.aca.2011.07.027
– ident: 2206_CR23
– volume: 132
  start-page: 239
  year: 2012
  ident: 2206_CR27
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.4725761
– volume: 72
  start-page: 1350
  year: 2014
  ident: 2206_CR24
  publication-title: J Oral Maxillofac Surg
  doi: 10.1016/j.joms.2013.12.006
– volume: 45
  start-page: 5
  year: 2001
  ident: 2206_CR7
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 24
  start-page: 19
  year: 2015
  ident: 2206_CR9
  publication-title: J Decis Syst
  doi: 10.1080/12460125.2015.994290
– volume: 26
  start-page: 56
  year: 2007
  ident: 2206_CR21
  publication-title: IEEE Eng Med Biol Mag
  doi: 10.1109/MEMB.2007.289122
– volume-title: An introduction to statistical learning
  year: 2013
  ident: 2206_CR2
  doi: 10.1007/978-1-4614-7138-7
– volume-title: Hidden health crisis costing America billions: underdiagnosing and undertreating obstructive sleep apnea draining healthcare system
  year: 2016
  ident: 2206_CR14
– volume-title: Breath sounds from basic science to clinical practice
  year: 2018
  ident: 2206_CR15
– volume: 57
  start-page: 2641
  year: 2019
  ident: 2206_CR6
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-019-02052-4
– volume: 45
  start-page: 839
  year: 2017
  ident: 2206_CR19
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-016-1720-5
– volume: 7
  start-page: 9
  year: 2003
  ident: 2206_CR17
  publication-title: Sleep Med Rev
  doi: 10.1053/smrv.2002.0238
– volume: 168
  start-page: 522
  year: 2003
  ident: 2206_CR25
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.200208-866OC
– volume: 40
  start-page: 916
  year: 2012
  ident: 2206_CR20
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-011-0456-5
– ident: 2206_CR22
  doi: 10.1093/biomet/73.3.751
– volume: 13
  start-page: e37
  year: 2017
  ident: 2206_CR16
  publication-title: Breathe
  doi: 10.1183/20734735.008817
SSID ssj0021524
Score 2.4140751
Snippet A major challenge in big and high-dimensional data analysis is related to the classification and prediction of the variables of interest by characterizing the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2517
SubjectTerms Acoustics
Apnea
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Classification
Computer Applications
Data analysis
Daytime
Dimensional analysis
Human Physiology
Imaging
Learning algorithms
Machine learning
Medical diagnosis
Original Article
Radiology
Regression analysis
Screening
Sensitivity analysis
Sleep
Sleep and wakefulness
Sleep apnea
Sleep disorders
Wakefulness
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6VRUJcoC0gFraVK_XWBm02sTc-rhAPtaInkOgp8mNcrYBkRRYk9ifwqxknTlYgisQ1dux4bGe-0cx8A_DdjpRwTg8jlTkRpYrMHZngOLJJzK1zghCtz0Y--yNOL9Jfl_wyJIVVbbR765Ks_9TLZDdSTuPImzs-O1REcgVWeZzJrAerk5O_v486Q4t0UtqFLhKCDskyr4_yXCEtUeYLx2itb4434aL90ibM5Orgbq4PzOIFieN7l_IRNgIAZZPmxHyCD1h8hrWz4GLfgscJM11tQlY6dltXq7-dLtCyJl9oavzDJoC2YKqwjBSeLW8YAWBaFLupAzSRhYoU_1hdbqfyzcyqB1_OntkmxG9a-SlKHWhs75FV14gzpmYFqm04Pz46PzyNQsGGyBCOm0eKp3pkDRohPVOcERozbQi_E6zTXKJMvcWDYmiGmVIcvctWm8QZngmOWbIDvaIscBdY7OJMO0SJlgCdtdIMYydSHNMEWiRpH-J203ITyMx9TY3rfEnD7GWck4zzWsa57MOP7p1ZQ-XxZu9BexbycK2rnLDQSJBNkiR9-NY104X0XhZVYHnn-ySpJ2jlog8_2-1fDvH_Gffe130f1kf-BNWBhQPo0T7hFwJIc_013IcnoE8Hjg
  priority: 102
  providerName: Springer Nature
Title A comparison of regularized logistic regression and random forest machine learning models for daytime diagnosis of obstructive sleep apnea
URI https://link.springer.com/article/10.1007/s11517-020-02206-9
https://www.proquest.com/docview/2442688233
https://www.proquest.com/docview/2434748456
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB9sC-KLqK14Wo8t9M0uXr42yZOcctfS0iKlhfMp7MesHLTJ2VRB_wT_ameSvRwK9imwu8lAZnfntzsfP4BDF2vlvZlIXXglU03HnTLBXLokypz3ihAtZyOfX6iT6_R0kS3ChVsbwirXe2K3UbvG8h35ezJDsSI4mCQfVt8ks0axdzVQaGzBTkSWhud5MT8eDlxkm9IhhJGQdEia6VPnyNTlkg9PnGuqZPm3YdqgzX8cpJ3dmT-DpwEwimmv4efwCOsX8Pg8uMR34fdU2IFLUDRe3HXs8nfLX-hEn9-ztNzYB7zWQtdOkIFyza0gwErCxW0XUIkiMEh8FR09TsvdwumfTD8vXB-St2xZRGNC2dkfKNobxJXQqxr1HlzNZ1efTmQgWJCWcNe91FlqYmfRqpIru1llsDCW8DbBMJOVWKZ8QkE1sZNC6wzZxWps4m1WqAyL5CVs102Nr0BEPiqMRyzREQBzrrSTyKsUcxJgVJKOIFr_3MqG4uPMgXFTbcoms0IqUkjVKaQqR_BueGfVl954cPT-WmdVWIZttZk0IzgYumkBsVdE19h85zFJygVVMzWCo7WuN5_4v8TXD0t8A09inl5d4N8-bJNe8C0BmHszhq18kY-7uTqGnenxl7MZPT_OLj5fUut1PP0D-bLypA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEC7iBjQX8YmbRG1BT9q48-qdOQSJmrAx2UVkhdyGflTLQjKzyUQl_gT_S_6jVfNaFMwt1-mZLuiq7vp66vEBvHShVt6bkdSpVzLWdN3JIhxLFwWJ814RouVq5OlMTb7Gn46T4zW46mphOK2yOxPrg9qVlv-RvyU3FCqCg1H0bnkmmTWKo6sdhUZjFod4-ZOubNXOwUfS76sw3N-bf5jIllVAWgIbF1InsQmdRasybmdmlcHUWAKZhD1MkmEWMyxHNbKjVOsEOa5obORtkqoE04imvQXrMRe0DmD9_d7s85f-hkfOMO5zJgm6t1U6Ta0e-dax5NsaF7cqmf3tCVfw9p-IbO3o9u_B3Rahit3GpO7DGhYP4Pa0jcE_hN-7wvbkhaL04rymsz9f_EInmoKiheWHTYZtIXThBHlEV54KQsgkXJzWGZwoWsqKb6Lm46l4WDh9yXz3wjU5gIuKRZSm7XP7A0V1grgUelmgfgTzm1j7xzAoygKfgAh8kBqPmKEjxOdcZkeBVzGOSYBRUTyEoFvc3Lbdzpl04yRf9WlmheSkkLxWSJ4N4XX_zbLp9XHt29udzvJ231f5ykqH8KIfph3LYRhdYPmd34li7uCaqCG86XS9muL_Ejevl_gc7kzm06P86GB2uAUbIZtanXW4DQPSET4l9HRhnrU2KyC_4V3yB9IpKwg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKkSouqLzE0gKDBCeIunlNkgNCFWXVUlpxKNLeonl4qpW6ybbZtio_gX_Ev8NOJhuBRG-9ZpKxNLbHn-MXwFsbKemcHgcqdzJIFLk7RYxZYOMwtc5JQrRcjXx0LPd_JF-n6XQNfve1MJxW2d-J7UVta8P_yHfIDEWS4GAc7zifFvF9b_JpcR7wBCmOtPbjNDoROcSba3Lfmo8He8Trd1E0-XLyeT_wEwYCQ8BjGag00ZE1aGTBrc2M1JhrQ4CTcIhOCywShugox2acK5Uixxi1iZ1Jc5liHtO29-B-FhOoIlXKpoOvR2YxWWVPEoj39Tpd1R5Z2Sxgv43LXGVQ_G0TB6D7T2y2NXmTTXjosarY7YTrEaxh9Rg2jnw0_gn82hVmNcZQ1E5ctIPtL2Y_0YqutGhm-GGXa1sJVVlBttHWc0FYmYiLeZvLicIPrzgV7WSehpeFVTfL2RyF7bIBZw2TqLXveHuFojlDXAi1qFA9hZO7OPlnsF7VFT4HEbow1w6xQEvYz9rCjEMnE8yIgJZxMoKwP9zS-L7nPH7jrBw6NjNDSmJI2TKkLEbwfvXNouv6cevb2z3PSn8DNOUgryN4s1om3eWAjKqwvuR34oR7uaZyBB96Xg9b_J_ii9spvoYN0o3y28Hx4RY8iFjS2vTDbVgnFuFLglFL_aoVWAHlHSvIH3PpLc8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+regularized+logistic+regression+and+random+forest+machine+learning+models+for+daytime+diagnosis+of+obstructive+sleep+apnea&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Hajipour%2C+Farahnaz&rft.au=Jozani%2C+Mohammad+Jafari&rft.au=Moussavi%2C+Zahra&rft.date=2020-10-01&rft.issn=0140-0118&rft.eissn=1741-0444&rft.volume=58&rft.issue=10&rft.spage=2517&rft.epage=2529&rft_id=info:doi/10.1007%2Fs11517-020-02206-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11517_020_02206_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon