A comparison of regularized logistic regression and random forest machine learning models for daytime diagnosis of obstructive sleep apnea
A major challenge in big and high-dimensional data analysis is related to the classification and prediction of the variables of interest by characterizing the relationships between the characteristic factors and predictors. This study aims to assess the utility of two important machine-learning tech...
Saved in:
Published in | Medical & biological engineering & computing Vol. 58; no. 10; pp. 2517 - 2529 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0140-0118 1741-0444 1741-0444 |
DOI | 10.1007/s11517-020-02206-9 |
Cover
Abstract | A major challenge in big and high-dimensional data analysis is related to the classification and prediction of the variables of interest by characterizing the relationships between the characteristic factors and predictors. This study aims to assess the utility of two important machine-learning techniques to classify subjects with obstructive sleep apnea (OSA) using their daytime tracheal breathing sounds. We evaluate and compare the performance of the random forest (RF) and regularized logistic regression (LR) as feature selection tools and classification approaches for wakefulness OSA screening. Results show that the RF, which is a low-variance committee-based approach, outperforms the regularized LR in terms of blind-testing accuracy, specificity, and sensitivity with 3.5%, 2.4%, and 3.7% improvement, respectively. However, the regularized LR was found to be faster than the RF and resulted in a more parsimonious model. Consequently, both the RF and regularized LR feature reduction and classification approaches are qualified to be applied for the daytime OSA screening studies, depending on the nature of data and applications’ purposes.
Graphical Abstract |
---|---|
AbstractList | A major challenge in big and high-dimensional data analysis is related to the classification and prediction of the variables of interest by characterizing the relationships between the characteristic factors and predictors. This study aims to assess the utility of two important machine-learning techniques to classify subjects with obstructive sleep apnea (OSA) using their daytime tracheal breathing sounds. We evaluate and compare the performance of the random forest (RF) and regularized logistic regression (LR) as feature selection tools and classification approaches for wakefulness OSA screening. Results show that the RF, which is a low-variance committee-based approach, outperforms the regularized LR in terms of blind-testing accuracy, specificity, and sensitivity with 3.5%, 2.4%, and 3.7% improvement, respectively. However, the regularized LR was found to be faster than the RF and resulted in a more parsimonious model. Consequently, both the RF and regularized LR feature reduction and classification approaches are qualified to be applied for the daytime OSA screening studies, depending on the nature of data and applications’ purposes. A major challenge in big and high-dimensional data analysis is related to the classification and prediction of the variables of interest by characterizing the relationships between the characteristic factors and predictors. This study aims to assess the utility of two important machine-learning techniques to classify subjects with obstructive sleep apnea (OSA) using their daytime tracheal breathing sounds. We evaluate and compare the performance of the random forest (RF) and regularized logistic regression (LR) as feature selection tools and classification approaches for wakefulness OSA screening. Results show that the RF, which is a low-variance committee-based approach, outperforms the regularized LR in terms of blind-testing accuracy, specificity, and sensitivity with 3.5%, 2.4%, and 3.7% improvement, respectively. However, the regularized LR was found to be faster than the RF and resulted in a more parsimonious model. Consequently, both the RF and regularized LR feature reduction and classification approaches are qualified to be applied for the daytime OSA screening studies, depending on the nature of data and applications' purposes. Graphical Abstract.A major challenge in big and high-dimensional data analysis is related to the classification and prediction of the variables of interest by characterizing the relationships between the characteristic factors and predictors. This study aims to assess the utility of two important machine-learning techniques to classify subjects with obstructive sleep apnea (OSA) using their daytime tracheal breathing sounds. We evaluate and compare the performance of the random forest (RF) and regularized logistic regression (LR) as feature selection tools and classification approaches for wakefulness OSA screening. Results show that the RF, which is a low-variance committee-based approach, outperforms the regularized LR in terms of blind-testing accuracy, specificity, and sensitivity with 3.5%, 2.4%, and 3.7% improvement, respectively. However, the regularized LR was found to be faster than the RF and resulted in a more parsimonious model. Consequently, both the RF and regularized LR feature reduction and classification approaches are qualified to be applied for the daytime OSA screening studies, depending on the nature of data and applications' purposes. Graphical Abstract. A major challenge in big and high-dimensional data analysis is related to the classification and prediction of the variables of interest by characterizing the relationships between the characteristic factors and predictors. This study aims to assess the utility of two important machine-learning techniques to classify subjects with obstructive sleep apnea (OSA) using their daytime tracheal breathing sounds. We evaluate and compare the performance of the random forest (RF) and regularized logistic regression (LR) as feature selection tools and classification approaches for wakefulness OSA screening. Results show that the RF, which is a low-variance committee-based approach, outperforms the regularized LR in terms of blind-testing accuracy, specificity, and sensitivity with 3.5%, 2.4%, and 3.7% improvement, respectively. However, the regularized LR was found to be faster than the RF and resulted in a more parsimonious model. Consequently, both the RF and regularized LR feature reduction and classification approaches are qualified to be applied for the daytime OSA screening studies, depending on the nature of data and applications’ purposes. Graphical Abstract |
Author | Hajipour, Farahnaz Jozani, Mohammad Jafari Moussavi, Zahra |
Author_xml | – sequence: 1 givenname: Farahnaz orcidid: 0000-0002-5531-757X surname: Hajipour fullname: Hajipour, Farahnaz email: Hajipouf@myumanitoba.ca organization: Biomedical Engineering Program, University of Manitoba – sequence: 2 givenname: Mohammad Jafari surname: Jozani fullname: Jozani, Mohammad Jafari organization: Department of Statistics, University of Manitoba – sequence: 3 givenname: Zahra surname: Moussavi fullname: Moussavi, Zahra organization: Biomedical Engineering Program, University of Manitoba, Electrical and Computer Engineering Department, University of Manitoba |
BookMark | eNp9kc1q3TAQhUVJoTdpX6ArQTbdONWvLS9DaJNCoJvshSyPXQVZcjR2IX2EPnV1ewuFLLKQhOZ8RxrpnJOzlBMQ8pGzK85Y9xk517xrmGB1CNY2_Rty4J3iDVNKnZED46pKnJt35BzxkTHBtVAH8vua-rysrgTMieaJFpj3WLe_YKQxzwG34I_FAoihIi6NtNQpL3TKtbjRxfkfIQGN4EoKaaZLHiHiUaaje97CAnQMbk4ZAx6vyANuZfdb-AkUI8BK3ZrAvSdvJxcRPvxbL8jD1y8PN3fN_ffbbzfX942XWmyN02oQowff9lxw6dsBzOC7ThjNB91Dr5iQDFrmmXFOgzay6nLy2rQajLwgn07HriU_7fUBdgnoIUaXIO9ohZKqU0bptqKXL9DHvJdUm6uUEq0xQspKmRPlS0YsMFkfNrfVz9qKC9FyZo8Z2VNGtmZk_2Zk-2oVL6xrCYsrz6-b5MmEFU4zlP9dveL6A5fgqFE |
CitedBy_id | crossref_primary_10_1007_s11042_023_17296_4 crossref_primary_10_3389_fenvs_2024_1471599 crossref_primary_10_1007_s13665_024_00361_0 crossref_primary_10_1161_JAHA_122_026987 crossref_primary_10_1007_s11517_024_03020_3 crossref_primary_10_3389_fcimb_2023_1098310 crossref_primary_10_1109_ACCESS_2024_3461164 crossref_primary_10_5937_jpmnt12_50921 crossref_primary_10_3390_healthcare13020181 crossref_primary_10_3389_fneur_2023_1123227 crossref_primary_10_1038_s41598_023_33170_7 crossref_primary_10_1109_ACCESS_2022_3215632 crossref_primary_10_3389_fdata_2024_1353469 crossref_primary_10_3390_diagnostics12010050 crossref_primary_10_1002_bimj_202300171 crossref_primary_10_1142_S0219519421400194 crossref_primary_10_3389_fped_2024_1328209 crossref_primary_10_1016_j_eswa_2023_119799 crossref_primary_10_3390_app12157943 crossref_primary_10_5664_jcsm_10532 crossref_primary_10_1007_s00034_021_01889_1 crossref_primary_10_1111_pai_14032 |
Cites_doi | 10.1016/j.joms.2013.12.006 10.1016/j.aca.2011.07.027 10.1053/smrv.2002.0238 10.1121/1.4725761 10.1093/sleep/28.4.499 10.1007/s10439-016-1720-5 10.1080/12460125.2014.888848 10.4065/mcp.2010.0810 10.1023/A:1010933404324 10.1164/ajrccm.152.5.7582313 10.1080/12460125.2015.994290 10.1164/rccm.200208-866OC 10.1093/eurheartj/ehw302 10.1111/j.1467-9868.2011.00771.x 10.1183/20734735.008817 10.1007/s10439-011-0456-5 10.1007/s10916-018-1151-y 10.1007/978-1-4614-7138-7 10.1056/NEJMp1302941 10.1109/EMBC.2014.6944558 10.1109/MEMB.2007.289122 10.1007/s11517-019-02052-4 10.1007/978-0-387-84858-7 10.1093/biomet/73.3.751 |
ContentType | Journal Article |
Copyright | International Federation for Medical and Biological Engineering 2020 International Federation for Medical and Biological Engineering 2020. |
Copyright_xml | – notice: International Federation for Medical and Biological Engineering 2020 – notice: International Federation for Medical and Biological Engineering 2020. |
DBID | AAYXX CITATION 3V. 7RV 7SC 7TB 7TS 7WY 7WZ 7X7 7XB 87Z 88A 88E 88I 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8FL ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ JQ2 K60 K6~ K7- K9. KB0 L.- L7M LK8 L~C L~D M0C M0N M0S M1P M2P M7P M7Z NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1007/s11517-020-02206-9 |
DatabaseName | CrossRef ProQuest Central (Corporate) Nursing & Allied Health Database Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database ProQuest Central Business Premium Collection Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database Biochemistry Abstracts 1 Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Business Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection Physical Education Index ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest One Business (Alumni) Biochemistry Abstracts 1 ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1741-0444 |
EndPage | 2529 |
ExternalDocumentID | 10_1007_s11517_020_02206_9 |
GrantInformation_xml | – fundername: Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada grantid: RGPIN-2017-05484 funderid: http://dx.doi.org/10.13039/501100002790 |
GroupedDBID | --- -4W -5B -5G -BR -EM -Y2 -~C -~X .4S .55 .86 .DC .GJ .VR 04C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 36B 3V. 4.4 406 408 40D 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 7RV 7WY 7X7 88A 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBNA ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ AXYYD AZFZN AZQEC B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBA EBD EBLON EBR EBS EBU ECS EDO EHE EIHBH EIOEI EJD EMB EMK EMOBN EPL ESBYG EST ESX EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K1G K60 K6V K6~ K7- KDC KOV L7B LAI LK8 LLZTM M0C M0L M0N M1P M2P M43 M4Y M7P MA- MK~ ML0 ML~ N2Q N9A NAPCQ NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P62 P9P PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS QWB R4E R89 R9I RHV RIG RNI ROL RPX RSV RXW RZK S16 S1Z S26 S27 S28 S3B SAP SBY SCLPG SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TAE TH9 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 WOW X7M YLTOR Z45 Z7R Z7U Z7X Z7Z Z82 Z83 Z87 Z88 Z8M Z8O Z8R Z8T Z8V Z8W Z91 Z92 ZGI ZL0 ZMTXR ZOVNA ZXP ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7TB 7TS 7XB 8AL 8FD 8FK ABRTQ FR3 JQ2 K9. L.- L7M L~C L~D M7Z P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO |
ID | FETCH-LOGICAL-c352t-a54b2dcec691213c6be8bc772851b59e940230e60c08aa5e5838bc3fc5865e83 |
IEDL.DBID | 8FG |
ISSN | 0140-0118 1741-0444 |
IngestDate | Thu Sep 04 23:07:17 EDT 2025 Fri Jul 25 18:56:47 EDT 2025 Tue Jul 01 02:58:31 EDT 2025 Thu Apr 24 23:06:13 EDT 2025 Fri Feb 21 02:31:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Regularized logistic regression Feature selection Random forest Obstructive sleep apnea Classification LASSO |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-a54b2dcec691213c6be8bc772851b59e940230e60c08aa5e5838bc3fc5865e83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
ORCID | 0000-0002-5531-757X |
PQID | 2442688233 |
PQPubID | 54161 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2434748456 proquest_journals_2442688233 crossref_citationtrail_10_1007_s11517_020_02206_9 crossref_primary_10_1007_s11517_020_02206_9 springer_journals_10_1007_s11517_020_02206_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201000 2020-10-00 20201001 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 20201000 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Medical & biological engineering & computing |
PublicationTitleAbbrev | Med Biol Eng Comput |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Kushida, Littner, Morgenthaler (CR12) 2005; 28 Sola-Soler, Fiz, Torres, Jane (CR18) 2014; 2014 Power (CR1) 2014; 23 Ludwig, Feuerriegel, Neumann (CR9) 2015; 24 Memtsoudis, Besculides, Mazumdar (CR13) 2013; 368 Tibshirani (CR5) 2011; 73 Hastie, Tibshirani, Friedman (CR4) 2009 Yadollahi, Moussavi (CR21) 2007; 26 Schwab, Gupta, Gefter (CR26) 1995; 152 Finkelstein, Wolf, Nachmani (CR24) 2014; 72 Ayappa, Rapoport (CR17) 2003; 7 Zhao (CR10) 2019; 43 Goldstein, Navar, Carter (CR8) 2017; 38 James, Witten, Hastie, Tibshirani (CR2) 2013 Priftis, Hadjileontiadis, Everard (CR15) 2018 Breiman (CR7) 2001; 45 Montazeri, Giannouli, Moussavi (CR20) 2012; 40 Bechwati, Avis, Bull (CR27) 2012; 132 CR23 CR22 Penzel, Sabil (CR16) 2017; 13 Elwali, Moussavi (CR19) 2017; 45 Hajipour, Jafari Jozani, Elwali, Moussavi (CR6) 2019; 57 Guyon, Elisseeff (CR3) 2003; 3 (CR14) 2016 Schwab, Pasirstein, Pierson (CR25) 2003; 168 Park, Ramar, Olson (CR11) 2011; 86 N Ludwig (2206_CR9) 2015; 24 SG Memtsoudis (2206_CR13) 2013; 368 G James (2206_CR2) 2013 I Guyon (2206_CR3) 2003; 3 American Academy of Sleep Medicine (2206_CR14) 2016 CA Kushida (2206_CR12) 2005; 28 J Sola-Soler (2206_CR18) 2014; 2014 JG Park (2206_CR11) 2011; 86 2206_CR23 2206_CR22 F Hajipour (2206_CR6) 2019; 57 Y Finkelstein (2206_CR24) 2014; 72 T Hastie (2206_CR4) 2009 A Elwali (2206_CR19) 2017; 45 B Zhao (2206_CR10) 2019; 43 T Penzel (2206_CR16) 2017; 13 A Yadollahi (2206_CR21) 2007; 26 RJ Schwab (2206_CR25) 2003; 168 F Bechwati (2206_CR27) 2012; 132 KN Priftis (2206_CR15) 2018 I Ayappa (2206_CR17) 2003; 7 DJ Power (2206_CR1) 2014; 23 BA Goldstein (2206_CR8) 2017; 38 L Breiman (2206_CR7) 2001; 45 A Montazeri (2206_CR20) 2012; 40 R Tibshirani (2206_CR5) 2011; 73 RJ Schwab (2206_CR26) 1995; 152 |
References_xml | – ident: CR22 – volume: 72 start-page: 1350 year: 2014 end-page: 1372 ident: CR24 article-title: Velopharyngeal anatomy in patients with obstructive sleep apnea versus normal subjects publication-title: J Oral Maxillofac Surg doi: 10.1016/j.joms.2013.12.006 – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: CR3 article-title: An introduction to variable and feature selection publication-title: J Mach Learn Res doi: 10.1016/j.aca.2011.07.027 – volume: 7 start-page: 9 year: 2003 end-page: 33 ident: CR17 article-title: The upper airway in sleep: physiology of the pharynx publication-title: Sleep Med Rev doi: 10.1053/smrv.2002.0238 – volume: 132 start-page: 239 year: 2012 end-page: 248 ident: CR27 article-title: Low frequency sound propagation in activated carbon publication-title: J Acoust Soc Am doi: 10.1121/1.4725761 – volume: 28 start-page: 499 year: 2005 end-page: 523 ident: CR12 article-title: Practice parameters for the indications for polysomnography and related procedures: an update for 2005 publication-title: Sleep doi: 10.1093/sleep/28.4.499 – volume: 45 start-page: 839 year: 2017 end-page: 850 ident: CR19 article-title: Obstructive sleep apnea screening and airway structure characterization during wakefulness using tracheal breathing sounds publication-title: Ann Biomed Eng doi: 10.1007/s10439-016-1720-5 – volume: 23 start-page: 222 year: 2014 end-page: 228 ident: CR1 article-title: Using ‘Big Data’ for analytics and decision support publication-title: J Decis Syst doi: 10.1080/12460125.2014.888848 – volume: 86 start-page: 549 year: 2011 end-page: 555 ident: CR11 article-title: Updates on definition, consequences, and management of obstructive sleep apnea publication-title: Mayo Clin Proc doi: 10.4065/mcp.2010.0810 – year: 2016 ident: CR14 publication-title: Hidden health crisis costing America billions: underdiagnosing and undertreating obstructive sleep apnea draining healthcare system – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: CR7 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 152 start-page: 1673 year: 1995 end-page: 1689 ident: CR26 article-title: Upper airway and soft tissue anatomy in normal subjects and patients with sleep-disordered breathing. Significance of the lateral pharyngeal walls publication-title: Am J Respir Crit Care Med doi: 10.1164/ajrccm.152.5.7582313 – volume: 24 start-page: 19 year: 2015 end-page: 36 ident: CR9 article-title: Putting Big Data analytics to work: feature selection for forecasting electricity prices using the LASSO and random forests publication-title: J Decis Syst doi: 10.1080/12460125.2015.994290 – volume: 168 start-page: 522 year: 2003 end-page: 530 ident: CR25 article-title: Identification of upper airway anatomic risk factors for obstructive sleep apnea with volumetric magnetic resonance imaging publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.200208-866OC – volume: 38 start-page: 1805 year: 2017 end-page: 1814 ident: CR8 article-title: Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges publication-title: Eur Heart J doi: 10.1093/eurheartj/ehw302 – year: 2018 ident: CR15 publication-title: Breath sounds from basic science to clinical practice – volume: 73 start-page: 273 year: 2011 end-page: 282 ident: CR5 article-title: Regression shrinkage and selection via the lasso: a retrospective publication-title: J R Stat Soc Ser B (Stat Methodol) doi: 10.1111/j.1467-9868.2011.00771.x – ident: CR23 – volume: 13 start-page: e37 year: 2017 end-page: e45 ident: CR16 article-title: The use of tracheal sounds for the diagnosis of sleep apnoea publication-title: Breathe doi: 10.1183/20734735.008817 – volume: 40 start-page: 916 year: 2012 end-page: 924 ident: CR20 article-title: Assessment of obstructive sleep apnea and its severity during wakefulness publication-title: Ann Biomed Eng doi: 10.1007/s10439-011-0456-5 – volume: 43 start-page: 32 year: 2019 ident: CR10 article-title: A machine learning approach to predicting case duration for Robot-assisted surgery publication-title: J Med Syst doi: 10.1007/s10916-018-1151-y – year: 2013 ident: CR2 publication-title: An introduction to statistical learning doi: 10.1007/978-1-4614-7138-7 – volume: 368 start-page: 2352 year: 2013 end-page: 2353 ident: CR13 article-title: A rude awakening—the perioperative sleep apnea epidemic publication-title: N Engl J Med doi: 10.1056/NEJMp1302941 – volume: 2014 start-page: 4232 year: 2014 end-page: 4235 ident: CR18 article-title: Identification of obstructive sleep apnea patients from tracheal breath sound analysis during wakefulness in polysomnographic studies publication-title: Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf doi: 10.1109/EMBC.2014.6944558 – volume: 26 start-page: 56 year: 2007 end-page: 61 ident: CR21 article-title: Acoustical flow estimation: review and validation publication-title: IEEE Eng Med Biol Mag doi: 10.1109/MEMB.2007.289122 – volume: 57 start-page: 2641 year: 2019 end-page: 2655 ident: CR6 article-title: Regularized logistic regression for obstructive sleep apnea screening during wakefulness using daytime tracheal breathing sounds and anthropometric information publication-title: Med Biol Eng Comput doi: 10.1007/s11517-019-02052-4 – year: 2009 ident: CR4 publication-title: The elements of statistical learning doi: 10.1007/978-0-387-84858-7 – volume: 38 start-page: 1805 year: 2017 ident: 2206_CR8 publication-title: Eur Heart J doi: 10.1093/eurheartj/ehw302 – volume: 2014 start-page: 4232 year: 2014 ident: 2206_CR18 publication-title: Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf doi: 10.1109/EMBC.2014.6944558 – volume: 86 start-page: 549 year: 2011 ident: 2206_CR11 publication-title: Mayo Clin Proc doi: 10.4065/mcp.2010.0810 – volume: 28 start-page: 499 year: 2005 ident: 2206_CR12 publication-title: Sleep doi: 10.1093/sleep/28.4.499 – volume: 152 start-page: 1673 year: 1995 ident: 2206_CR26 publication-title: Am J Respir Crit Care Med doi: 10.1164/ajrccm.152.5.7582313 – volume: 73 start-page: 273 year: 2011 ident: 2206_CR5 publication-title: J R Stat Soc Ser B (Stat Methodol) doi: 10.1111/j.1467-9868.2011.00771.x – volume: 43 start-page: 32 year: 2019 ident: 2206_CR10 publication-title: J Med Syst doi: 10.1007/s10916-018-1151-y – volume: 23 start-page: 222 year: 2014 ident: 2206_CR1 publication-title: J Decis Syst doi: 10.1080/12460125.2014.888848 – volume-title: The elements of statistical learning year: 2009 ident: 2206_CR4 doi: 10.1007/978-0-387-84858-7 – volume: 368 start-page: 2352 year: 2013 ident: 2206_CR13 publication-title: N Engl J Med doi: 10.1056/NEJMp1302941 – volume: 3 start-page: 1157 year: 2003 ident: 2206_CR3 publication-title: J Mach Learn Res doi: 10.1016/j.aca.2011.07.027 – ident: 2206_CR23 – volume: 132 start-page: 239 year: 2012 ident: 2206_CR27 publication-title: J Acoust Soc Am doi: 10.1121/1.4725761 – volume: 72 start-page: 1350 year: 2014 ident: 2206_CR24 publication-title: J Oral Maxillofac Surg doi: 10.1016/j.joms.2013.12.006 – volume: 45 start-page: 5 year: 2001 ident: 2206_CR7 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 24 start-page: 19 year: 2015 ident: 2206_CR9 publication-title: J Decis Syst doi: 10.1080/12460125.2015.994290 – volume: 26 start-page: 56 year: 2007 ident: 2206_CR21 publication-title: IEEE Eng Med Biol Mag doi: 10.1109/MEMB.2007.289122 – volume-title: An introduction to statistical learning year: 2013 ident: 2206_CR2 doi: 10.1007/978-1-4614-7138-7 – volume-title: Hidden health crisis costing America billions: underdiagnosing and undertreating obstructive sleep apnea draining healthcare system year: 2016 ident: 2206_CR14 – volume-title: Breath sounds from basic science to clinical practice year: 2018 ident: 2206_CR15 – volume: 57 start-page: 2641 year: 2019 ident: 2206_CR6 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-019-02052-4 – volume: 45 start-page: 839 year: 2017 ident: 2206_CR19 publication-title: Ann Biomed Eng doi: 10.1007/s10439-016-1720-5 – volume: 7 start-page: 9 year: 2003 ident: 2206_CR17 publication-title: Sleep Med Rev doi: 10.1053/smrv.2002.0238 – volume: 168 start-page: 522 year: 2003 ident: 2206_CR25 publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.200208-866OC – volume: 40 start-page: 916 year: 2012 ident: 2206_CR20 publication-title: Ann Biomed Eng doi: 10.1007/s10439-011-0456-5 – ident: 2206_CR22 doi: 10.1093/biomet/73.3.751 – volume: 13 start-page: e37 year: 2017 ident: 2206_CR16 publication-title: Breathe doi: 10.1183/20734735.008817 |
SSID | ssj0021524 |
Score | 2.4140751 |
Snippet | A major challenge in big and high-dimensional data analysis is related to the classification and prediction of the variables of interest by characterizing the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2517 |
SubjectTerms | Acoustics Apnea Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Classification Computer Applications Data analysis Daytime Dimensional analysis Human Physiology Imaging Learning algorithms Machine learning Medical diagnosis Original Article Radiology Regression analysis Screening Sensitivity analysis Sleep Sleep and wakefulness Sleep apnea Sleep disorders Wakefulness |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6VRUJcoC0gFraVK_XWBm02sTc-rhAPtaInkOgp8mNcrYBkRRYk9ifwqxknTlYgisQ1dux4bGe-0cx8A_DdjpRwTg8jlTkRpYrMHZngOLJJzK1zghCtz0Y--yNOL9Jfl_wyJIVVbbR765Ks_9TLZDdSTuPImzs-O1REcgVWeZzJrAerk5O_v486Q4t0UtqFLhKCDskyr4_yXCEtUeYLx2itb4434aL90ibM5Orgbq4PzOIFieN7l_IRNgIAZZPmxHyCD1h8hrWz4GLfgscJM11tQlY6dltXq7-dLtCyJl9oavzDJoC2YKqwjBSeLW8YAWBaFLupAzSRhYoU_1hdbqfyzcyqB1_OntkmxG9a-SlKHWhs75FV14gzpmYFqm04Pz46PzyNQsGGyBCOm0eKp3pkDRohPVOcERozbQi_E6zTXKJMvcWDYmiGmVIcvctWm8QZngmOWbIDvaIscBdY7OJMO0SJlgCdtdIMYydSHNMEWiRpH-J203ITyMx9TY3rfEnD7GWck4zzWsa57MOP7p1ZQ-XxZu9BexbycK2rnLDQSJBNkiR9-NY104X0XhZVYHnn-ySpJ2jlog8_2-1fDvH_Gffe130f1kf-BNWBhQPo0T7hFwJIc_013IcnoE8Hjg priority: 102 providerName: Springer Nature |
Title | A comparison of regularized logistic regression and random forest machine learning models for daytime diagnosis of obstructive sleep apnea |
URI | https://link.springer.com/article/10.1007/s11517-020-02206-9 https://www.proquest.com/docview/2442688233 https://www.proquest.com/docview/2434748456 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB9sC-KLqK14Wo8t9M0uXr42yZOcctfS0iKlhfMp7MesHLTJ2VRB_wT_ameSvRwK9imwu8lAZnfntzsfP4BDF2vlvZlIXXglU03HnTLBXLokypz3ihAtZyOfX6iT6_R0kS3ChVsbwirXe2K3UbvG8h35ezJDsSI4mCQfVt8ks0axdzVQaGzBTkSWhud5MT8eDlxkm9IhhJGQdEia6VPnyNTlkg9PnGuqZPm3YdqgzX8cpJ3dmT-DpwEwimmv4efwCOsX8Pg8uMR34fdU2IFLUDRe3HXs8nfLX-hEn9-ztNzYB7zWQtdOkIFyza0gwErCxW0XUIkiMEh8FR09TsvdwumfTD8vXB-St2xZRGNC2dkfKNobxJXQqxr1HlzNZ1efTmQgWJCWcNe91FlqYmfRqpIru1llsDCW8DbBMJOVWKZ8QkE1sZNC6wzZxWps4m1WqAyL5CVs102Nr0BEPiqMRyzREQBzrrSTyKsUcxJgVJKOIFr_3MqG4uPMgXFTbcoms0IqUkjVKaQqR_BueGfVl954cPT-WmdVWIZttZk0IzgYumkBsVdE19h85zFJygVVMzWCo7WuN5_4v8TXD0t8A09inl5d4N8-bJNe8C0BmHszhq18kY-7uTqGnenxl7MZPT_OLj5fUut1PP0D-bLypA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEC7iBjQX8YmbRG1BT9q48-qdOQSJmrAx2UVkhdyGflTLQjKzyUQl_gT_S_6jVfNaFMwt1-mZLuiq7vp66vEBvHShVt6bkdSpVzLWdN3JIhxLFwWJ814RouVq5OlMTb7Gn46T4zW46mphOK2yOxPrg9qVlv-RvyU3FCqCg1H0bnkmmTWKo6sdhUZjFod4-ZOubNXOwUfS76sw3N-bf5jIllVAWgIbF1InsQmdRasybmdmlcHUWAKZhD1MkmEWMyxHNbKjVOsEOa5obORtkqoE04imvQXrMRe0DmD9_d7s85f-hkfOMO5zJgm6t1U6Ta0e-dax5NsaF7cqmf3tCVfw9p-IbO3o9u_B3Rahit3GpO7DGhYP4Pa0jcE_hN-7wvbkhaL04rymsz9f_EInmoKiheWHTYZtIXThBHlEV54KQsgkXJzWGZwoWsqKb6Lm46l4WDh9yXz3wjU5gIuKRZSm7XP7A0V1grgUelmgfgTzm1j7xzAoygKfgAh8kBqPmKEjxOdcZkeBVzGOSYBRUTyEoFvc3Lbdzpl04yRf9WlmheSkkLxWSJ4N4XX_zbLp9XHt29udzvJ231f5ykqH8KIfph3LYRhdYPmd34li7uCaqCG86XS9muL_Ejevl_gc7kzm06P86GB2uAUbIZtanXW4DQPSET4l9HRhnrU2KyC_4V3yB9IpKwg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKkSouqLzE0gKDBCeIunlNkgNCFWXVUlpxKNLeonl4qpW6ybbZtio_gX_Ev8NOJhuBRG-9ZpKxNLbHn-MXwFsbKemcHgcqdzJIFLk7RYxZYOMwtc5JQrRcjXx0LPd_JF-n6XQNfve1MJxW2d-J7UVta8P_yHfIDEWS4GAc7zifFvF9b_JpcR7wBCmOtPbjNDoROcSba3Lfmo8He8Trd1E0-XLyeT_wEwYCQ8BjGag00ZE1aGTBrc2M1JhrQ4CTcIhOCywShugox2acK5Uixxi1iZ1Jc5liHtO29-B-FhOoIlXKpoOvR2YxWWVPEoj39Tpd1R5Z2Sxgv43LXGVQ_G0TB6D7T2y2NXmTTXjosarY7YTrEaxh9Rg2jnw0_gn82hVmNcZQ1E5ctIPtL2Y_0YqutGhm-GGXa1sJVVlBttHWc0FYmYiLeZvLicIPrzgV7WSehpeFVTfL2RyF7bIBZw2TqLXveHuFojlDXAi1qFA9hZO7OPlnsF7VFT4HEbow1w6xQEvYz9rCjEMnE8yIgJZxMoKwP9zS-L7nPH7jrBw6NjNDSmJI2TKkLEbwfvXNouv6cevb2z3PSn8DNOUgryN4s1om3eWAjKqwvuR34oR7uaZyBB96Xg9b_J_ii9spvoYN0o3y28Hx4RY8iFjS2vTDbVgnFuFLglFL_aoVWAHlHSvIH3PpLc8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+regularized+logistic+regression+and+random+forest+machine+learning+models+for+daytime+diagnosis+of+obstructive+sleep+apnea&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Hajipour%2C+Farahnaz&rft.au=Jozani%2C+Mohammad+Jafari&rft.au=Moussavi%2C+Zahra&rft.date=2020-10-01&rft.issn=0140-0118&rft.eissn=1741-0444&rft.volume=58&rft.issue=10&rft.spage=2517&rft.epage=2529&rft_id=info:doi/10.1007%2Fs11517-020-02206-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11517_020_02206_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon |