A comparison of regularized logistic regression and random forest machine learning models for daytime diagnosis of obstructive sleep apnea

A major challenge in big and high-dimensional data analysis is related to the classification and prediction of the variables of interest by characterizing the relationships between the characteristic factors and predictors. This study aims to assess the utility of two important machine-learning tech...

Full description

Saved in:
Bibliographic Details
Published inMedical & biological engineering & computing Vol. 58; no. 10; pp. 2517 - 2529
Main Authors Hajipour, Farahnaz, Jozani, Mohammad Jafari, Moussavi, Zahra
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0140-0118
1741-0444
1741-0444
DOI10.1007/s11517-020-02206-9

Cover

Loading…
More Information
Summary:A major challenge in big and high-dimensional data analysis is related to the classification and prediction of the variables of interest by characterizing the relationships between the characteristic factors and predictors. This study aims to assess the utility of two important machine-learning techniques to classify subjects with obstructive sleep apnea (OSA) using their daytime tracheal breathing sounds. We evaluate and compare the performance of the random forest (RF) and regularized logistic regression (LR) as feature selection tools and classification approaches for wakefulness OSA screening. Results show that the RF, which is a low-variance committee-based approach, outperforms the regularized LR in terms of blind-testing accuracy, specificity, and sensitivity with 3.5%, 2.4%, and 3.7% improvement, respectively. However, the regularized LR was found to be faster than the RF and resulted in a more parsimonious model. Consequently, both the RF and regularized LR feature reduction and classification approaches are qualified to be applied for the daytime OSA screening studies, depending on the nature of data and applications’ purposes. Graphical Abstract
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0140-0118
1741-0444
1741-0444
DOI:10.1007/s11517-020-02206-9