The distribution of the sample correlation coefficient under variance-truncated normality

The non-null distribution of the sample correlation coefficient under bivariate normality is derived when each of the associated two sample variances is subject to stripe truncation including usual single and double truncation as special cases. The probability density function is obtained using seri...

Full description

Saved in:
Bibliographic Details
Published inMetrika Vol. 87; no. 5; pp. 471 - 497
Main Author Ogasawara, Haruhiko
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The non-null distribution of the sample correlation coefficient under bivariate normality is derived when each of the associated two sample variances is subject to stripe truncation including usual single and double truncation as special cases. The probability density function is obtained using series expressions as in the untruncated case with new definitions of weighted hypergeometric functions. Formulas of the moments of arbitrary orders are given using the weighted hypergeometric functions. It is shown that the null joint distribution of the sample correlation coefficients under multivariate untruncated normality holds also in the variance-truncated cases. Some numerical illustrations are shown.
AbstractList The non-null distribution of the sample correlation coefficient under bivariate normality is derived when each of the associated two sample variances is subject to stripe truncation including usual single and double truncation as special cases. The probability density function is obtained using series expressions as in the untruncated case with new definitions of weighted hypergeometric functions. Formulas of the moments of arbitrary orders are given using the weighted hypergeometric functions. It is shown that the null joint distribution of the sample correlation coefficients under multivariate untruncated normality holds also in the variance-truncated cases. Some numerical illustrations are shown.
Author Ogasawara, Haruhiko
Author_xml – sequence: 1
  givenname: Haruhiko
  orcidid: 0000-0002-5029-2086
  surname: Ogasawara
  fullname: Ogasawara, Haruhiko
  email: emt-hogasa@emt.otaru-uc.ac.jp
  organization: Otaru University of Commerce
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnqOTZDe7OUrxCwQvFfQUsmmiKdukJlmh_95tVxA89DQw8z4zwzNDEx-8QeiSwDUBqG8SAGlKDJRhAEEaDCdoSkpWYUH52wRNASjHhLHqDM1SWg_xmlM6Re_LT1OsXMrRtX12wRfBFnnoJbXZdqbQIUbTqcNEB2Ot0874XPR-ZWLxraJTXhucY--1ymZV-BA3qnN5d45OreqSufitc_R6f7dcPOLnl4enxe0z1qyiGSuoaS2oUVzYkrW25VZbUVcgLNRMK2XbkhFqeCXaUlelKInmildNYypCNWFzdDXu3cbw1ZuU5Tr00Q8nJQPOG14KgCFFx5SOIaVorNxGt1FxJwnIvUI5KpSDQnlQKPdQ8w_SLh9c5KhcdxxlI5qGO_7DxL-vjlA_jGSIyQ
CitedBy_id crossref_primary_10_1007_s00184_023_00918_0
Cites_doi 10.2307/2334076
10.1016/j.jmva.2017.02.011
10.1007/s00184-020-00802-1
10.1214/aoms/1177704016
10.1016/j.jmva.2021.104729
10.1080/03610926.2012.735324
10.1080/10618600.2017.1322092
10.1080/03610929208830890
10.1111/j.2517-6161.1965.tb01497.x
10.1002/9780470316559
10.1007/s11009-018-9622-7
10.3844/jmssp.2016.12.22
10.1080/03610926.2020.1867742
10.2307/3315434
10.1111/j.2517-6161.1953.tb00135.x
10.1111/j.2517-6161.1961.tb00408.x
10.1080/07474939908800447
10.1017/CBO9780511550683
10.1501/Commua1_0000000322
10.1002/0471722065
10.1007/s00184-023-00918-0
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s00184-023-00918-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1435-926X
EndPage 497
ExternalDocumentID 10_1007_s00184_023_00918_0
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
123
199
1N0
1SB
203
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
692
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEHJ
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RYB
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Y6R
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c352t-a072792ea69f43bfb6fcf97509f073caafb4312e659b4c54941c6a6588e512c13
IEDL.DBID U2A
ISSN 0026-1335
IngestDate Fri Jul 25 10:56:43 EDT 2025
Tue Jul 01 03:20:53 EDT 2025
Thu Apr 24 23:00:03 EDT 2025
Fri Feb 21 02:41:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Stripe truncation
Multivariate normality
Sample variances and covariances
Multivariate gamma function
Weighted hypergeometric functions
Wishart distribution
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-a072792ea69f43bfb6fcf97509f073caafb4312e659b4c54941c6a6588e512c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5029-2086
PQID 3066864900
PQPubID 2043711
PageCount 27
ParticipantIDs proquest_journals_3066864900
crossref_primary_10_1007_s00184_023_00918_0
crossref_citationtrail_10_1007_s00184_023_00918_0
springer_journals_10_1007_s00184_023_00918_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle International Journal for Theoretical and Applied Statistics
PublicationTitle Metrika
PublicationTitleAbbrev Metrika
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Tallis (CR43) 1963; 34
Finney (CR12) 1938; 30
Abadir (CR1) 1999; 18
Arismendi, Broda (CR6) 2017; 157
CR16
Ghosh (CR17) 1966; 53
CR37
CR14
Galarza, Lin, Wang, Lachos (CR15) 2021; 84
CR35
CR11
Fisher (CR13) 1915; 10
CR10
CR32
Anderson (CR4) 1958
Ogasawara (CR30) 2021
Bose (CR9) 1935; 2
Rainville (CR36) 1960
Joarder (CR20) 2013; 2
Mathai (CR28) 1993
Hotelling (CR18) 1953; 15
Tallis (CR42) 1961; 23
Anderson (CR5) 2003
Kan, Robotti (CR23) 2017; 26
CR8
CR7
Ogasawara (CR31) 2022; 51
CR26
CR25
CR45
Abramowitz, Stegun (CR2) 1972
Slater (CR39) 1966
Kotz, Nadarajah (CR27) 2004
Romero-Padilla (CR38) 2016; 12
CR41
Ali, Joarder (CR3) 1991; 19
Joarder, Ali (CR21) 1992; 21
Pollack, Shauly-Aharonov (CR34) 2019; 21
Johnson, Kotz, Balakrishnan (CR22) 1995
Joarder (CR19) 2006; 4
Tallis (CR44) 1965; 27
Soper, Young, Cave, Lee, Pearson (CR40) 1917; 11
Omar, Joarder, Riaz (CR33) 2015; 44
Kendall (CR24) 1948
Muirhead (CR29) 1982
RA Fisher (918_CR13) 1915; 10
BK Ghosh (918_CR17) 1966; 53
M Pollack (918_CR34) 2019; 21
DJ Finney (918_CR12) 1938; 30
AH Joarder (918_CR21) 1992; 21
RJ Muirhead (918_CR29) 1982
MH Omar (918_CR33) 2015; 44
AM Mathai (918_CR28) 1993
918_CR37
918_CR16
918_CR35
918_CR14
AH Joarder (918_CR19) 2006; 4
918_CR11
H Hotelling (918_CR18) 1953; 15
TW Anderson (918_CR5) 2003
NL Johnson (918_CR22) 1995
918_CR10
918_CR32
S Bose (918_CR9) 1935; 2
AH Joarder (918_CR20) 2013; 2
(918_CR2) 1972
JC Arismendi (918_CR6) 2017; 157
H Ogasawara (918_CR31) 2022; 51
GM Tallis (918_CR42) 1961; 23
KM Abadir (918_CR1) 1999; 18
H Ogasawara (918_CR30) 2021
TW Anderson (918_CR4) 1958
R Kan (918_CR23) 2017; 26
S Kotz (918_CR27) 2004
918_CR8
918_CR7
918_CR26
918_CR25
GM Tallis (918_CR44) 1965; 27
MM Ali (918_CR3) 1991; 19
918_CR45
CE Galarza (918_CR15) 2021; 84
LJ Slater (918_CR39) 1966
918_CR41
HE Soper (918_CR40) 1917; 11
GM Tallis (918_CR43) 1963; 34
MG Kendall (918_CR24) 1948
ED Rainville (918_CR36) 1960
J Romero-Padilla (918_CR38) 2016; 12
References_xml – volume: 53
  start-page: 258
  year: 1966
  end-page: 262
  ident: CR17
  article-title: Asymptotic expansions for the moments of the distribution of correlation coefficient
  publication-title: Biometrika
  doi: 10.2307/2334076
– ident: CR45
– volume: 157
  start-page: 29
  year: 2017
  end-page: 44
  ident: CR6
  article-title: Multivariate elliptical truncated moments
  publication-title: J Multivar Anal
  doi: 10.1016/j.jmva.2017.02.011
– volume: 84
  start-page: 825
  year: 2021
  end-page: 850
  ident: CR15
  article-title: On moments of folded and truncated multivariate Student- distributions based on recurrence relations
  publication-title: Metrika
  doi: 10.1007/s00184-020-00802-1
– volume: 34
  start-page: 940
  year: 1963
  end-page: 944
  ident: CR43
  article-title: Elliptical and radial truncation in normal populations
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177704016
– year: 2021
  ident: CR30
  article-title: A non-recursive formula for various moments of the multivariate normal distribution with sectional truncation
  publication-title: J Multiv Anal (online Published)
  doi: 10.1016/j.jmva.2021.104729
– volume: 44
  start-page: 261
  year: 2015
  end-page: 274
  ident: CR33
  article-title: On a correlated variance ratio distribution and its industrial application
  publication-title: Commun Stat Theory Methods
  doi: 10.1080/03610926.2012.735324
– volume: 26
  start-page: 930
  year: 2017
  end-page: 934
  ident: CR23
  article-title: On moments of folded and truncated multivariate normal distributions
  publication-title: J Comput Graph Stat
  doi: 10.1080/10618600.2017.1322092
– year: 1993
  ident: CR28
  publication-title: A handbook for generalized functions for statistical and physical sciences
– volume: 30
  start-page: 190
  year: 1938
  end-page: 192
  ident: CR12
  article-title: The distribution of the ratio of estimates of the two variances in a sample from a normal bi-variate population
  publication-title: Biometrika
– volume: 21
  start-page: 1953
  year: 1992
  end-page: 1964
  ident: CR21
  article-title: Distribution of the correlation matrix for a class of elliptical models
  publication-title: Commun Stat Theory Methods
  doi: 10.1080/03610929208830890
– ident: CR14
– ident: CR16
– year: 1995
  ident: CR22
  publication-title: Continuous univariate distributions, vol 2
– ident: CR37
– volume: 2
  start-page: 65
  year: 1935
  end-page: 72
  ident: CR9
  article-title: On the distribution of the ratio of variances of two samples drawn from a given normal bivariate correlated population (with comments by P. C. Mahalanobis)
  publication-title: Sankhyā
– ident: CR10
– ident: CR35
– volume: 27
  start-page: 301
  year: 1965
  end-page: 307
  ident: CR44
  article-title: Plane truncation in normal populations
  publication-title: J R Stat Soc B
  doi: 10.1111/j.2517-6161.1965.tb01497.x
– ident: CR8
– volume: 10
  start-page: 507
  year: 1915
  end-page: 521
  ident: CR13
  article-title: Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population
  publication-title: Biometrika
– ident: CR25
– year: 1948
  ident: CR24
  publication-title: The advanced theory of statistics,
– year: 1982
  ident: CR29
  publication-title: Aspects of multivariate statistical theory
  doi: 10.1002/9780470316559
– volume: 21
  start-page: 889
  year: 2019
  end-page: 906
  ident: CR34
  article-title: A double recursion for calculating moments of the truncated normal distribution and its connection to change detection
  publication-title: Methodol Comput Appl Probab
  doi: 10.1007/s11009-018-9622-7
– volume: 11
  start-page: 328
  year: 1917
  end-page: 413
  ident: CR40
  article-title: On the distribution of the correlation coefficient in small samples. Appendix II to the papers of “Student” and R. A
  publication-title: Fisher Biometrika
– volume: 12
  start-page: 12
  issue: 1
  year: 2016
  end-page: 22
  ident: CR38
  article-title: Product moments of sample variances and correlation for variables with bivariate normal distribution
  publication-title: J Math Stat
  doi: 10.3844/jmssp.2016.12.22
– volume: 51
  start-page: 6834
  year: 2022
  end-page: 6862
  ident: CR31
  article-title: Unified and non-recursive formulas for moments of the normal distribution with stripe truncation
  publication-title: Commun Stat Theory Methods
  doi: 10.1080/03610926.2020.1867742
– year: 1958
  ident: CR4
  publication-title: An introduction to multivariate statistical analysis
– volume: 2
  start-page: 277
  issue: 36
  year: 2013
  end-page: 284
  ident: CR20
  article-title: Robustness of correlation coefficient and variance ratio under elliptical symmetry
  publication-title: Bull Malay Math Sci Soc Ser
– volume: 4
  start-page: 233
  issue: 2
  year: 2006
  end-page: 243
  ident: CR19
  article-title: Product moments of bivariate Wishart distribution
  publication-title: J Probab Stat Sci
– ident: CR11
– year: 2003
  ident: CR5
  publication-title: An introduction to multivariate statistical analysis
– ident: CR32
– volume: 19
  start-page: 447
  year: 1991
  end-page: 452
  ident: CR3
  article-title: Distribution of the correlation coefficient for the class of bivariate elliptical models
  publication-title: Can J Stat
  doi: 10.2307/3315434
– ident: CR7
– volume: 15
  start-page: 193
  year: 1953
  end-page: 232
  ident: CR18
  article-title: New light on the correlation coefficient and its transforms (with discussion)
  publication-title: J R Stat Soc B
  doi: 10.1111/j.2517-6161.1953.tb00135.x
– start-page: 2008
  year: 1966
  ident: CR39
  publication-title: Generalized hypergeometric functions
– year: 1972
  ident: CR2
  publication-title: Handbook of mathematical functions with formulas, graphs, and mathematical tables (ninth printing)
– ident: CR41
– ident: CR26
– year: 1960
  ident: CR36
  publication-title: Special functions
– volume: 23
  start-page: 223
  year: 1961
  end-page: 229
  ident: CR42
  article-title: The moment generating function of the truncated multi-normal distribution
  publication-title: J R Stat Soc B
  doi: 10.1111/j.2517-6161.1961.tb00408.x
– volume: 18
  start-page: 287
  year: 1999
  end-page: 330
  ident: CR1
  article-title: An introduction to hypergeometric functions for economists
  publication-title: Econom Rev
  doi: 10.1080/07474939908800447
– year: 2004
  ident: CR27
  publication-title: Multivariate distributions and their applications
  doi: 10.1017/CBO9780511550683
– volume-title: Continuous univariate distributions, vol 2
  year: 1995
  ident: 918_CR22
– volume: 34
  start-page: 940
  year: 1963
  ident: 918_CR43
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177704016
– volume-title: The advanced theory of statistics,
  year: 1948
  ident: 918_CR24
– volume-title: Aspects of multivariate statistical theory
  year: 1982
  ident: 918_CR29
  doi: 10.1002/9780470316559
– volume: 19
  start-page: 447
  year: 1991
  ident: 918_CR3
  publication-title: Can J Stat
  doi: 10.2307/3315434
– ident: 918_CR10
– volume: 10
  start-page: 507
  year: 1915
  ident: 918_CR13
  publication-title: Biometrika
– ident: 918_CR25
– ident: 918_CR35
  doi: 10.1501/Commua1_0000000322
– volume: 12
  start-page: 12
  issue: 1
  year: 2016
  ident: 918_CR38
  publication-title: J Math Stat
  doi: 10.3844/jmssp.2016.12.22
– ident: 918_CR41
– volume: 84
  start-page: 825
  year: 2021
  ident: 918_CR15
  publication-title: Metrika
  doi: 10.1007/s00184-020-00802-1
– volume: 30
  start-page: 190
  year: 1938
  ident: 918_CR12
  publication-title: Biometrika
– volume-title: A handbook for generalized functions for statistical and physical sciences
  year: 1993
  ident: 918_CR28
– volume-title: Handbook of mathematical functions with formulas, graphs, and mathematical tables (ninth printing)
  year: 1972
  ident: 918_CR2
– volume-title: Multivariate t distributions and their applications
  year: 2004
  ident: 918_CR27
  doi: 10.1017/CBO9780511550683
– volume: 23
  start-page: 223
  year: 1961
  ident: 918_CR42
  publication-title: J R Stat Soc B
  doi: 10.1111/j.2517-6161.1961.tb00408.x
– volume: 21
  start-page: 1953
  year: 1992
  ident: 918_CR21
  publication-title: Commun Stat Theory Methods
  doi: 10.1080/03610929208830890
– ident: 918_CR26
  doi: 10.1002/0471722065
– volume-title: An introduction to multivariate statistical analysis
  year: 1958
  ident: 918_CR4
– ident: 918_CR8
– ident: 918_CR11
– volume-title: Special functions
  year: 1960
  ident: 918_CR36
– volume-title: An introduction to multivariate statistical analysis
  year: 2003
  ident: 918_CR5
– volume: 2
  start-page: 277
  issue: 36
  year: 2013
  ident: 918_CR20
  publication-title: Bull Malay Math Sci Soc Ser
– volume: 18
  start-page: 287
  year: 1999
  ident: 918_CR1
  publication-title: Econom Rev
  doi: 10.1080/07474939908800447
– volume: 53
  start-page: 258
  year: 1966
  ident: 918_CR17
  publication-title: Biometrika
  doi: 10.2307/2334076
– volume: 157
  start-page: 29
  year: 2017
  ident: 918_CR6
  publication-title: J Multivar Anal
  doi: 10.1016/j.jmva.2017.02.011
– volume: 4
  start-page: 233
  issue: 2
  year: 2006
  ident: 918_CR19
  publication-title: J Probab Stat Sci
– ident: 918_CR32
  doi: 10.1007/s00184-023-00918-0
– ident: 918_CR45
– ident: 918_CR7
– volume: 15
  start-page: 193
  year: 1953
  ident: 918_CR18
  publication-title: J R Stat Soc B
  doi: 10.1111/j.2517-6161.1953.tb00135.x
– year: 2021
  ident: 918_CR30
  publication-title: J Multiv Anal (online Published)
  doi: 10.1016/j.jmva.2021.104729
– volume: 51
  start-page: 6834
  year: 2022
  ident: 918_CR31
  publication-title: Commun Stat Theory Methods
  doi: 10.1080/03610926.2020.1867742
– volume: 2
  start-page: 65
  year: 1935
  ident: 918_CR9
  publication-title: Sankhyā
– volume: 11
  start-page: 328
  year: 1917
  ident: 918_CR40
  publication-title: Fisher Biometrika
– start-page: 2008
  volume-title: Generalized hypergeometric functions
  year: 1966
  ident: 918_CR39
– ident: 918_CR37
– ident: 918_CR14
– volume: 44
  start-page: 261
  year: 2015
  ident: 918_CR33
  publication-title: Commun Stat Theory Methods
  doi: 10.1080/03610926.2012.735324
– volume: 27
  start-page: 301
  year: 1965
  ident: 918_CR44
  publication-title: J R Stat Soc B
  doi: 10.1111/j.2517-6161.1965.tb01497.x
– ident: 918_CR16
– volume: 21
  start-page: 889
  year: 2019
  ident: 918_CR34
  publication-title: Methodol Comput Appl Probab
  doi: 10.1007/s11009-018-9622-7
– volume: 26
  start-page: 930
  year: 2017
  ident: 918_CR23
  publication-title: J Comput Graph Stat
  doi: 10.1080/10618600.2017.1322092
SSID ssj0017622
Score 2.3397043
Snippet The non-null distribution of the sample correlation coefficient under bivariate normality is derived when each of the associated two sample variances is...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 471
SubjectTerms Bivariate analysis
Correlation coefficients
Economic Theory/Quantitative Economics/Mathematical Methods
Hypergeometric functions
Mathematics and Statistics
Normality
Probability density functions
Probability Theory and Stochastic Processes
Statistics
Variance
Title The distribution of the sample correlation coefficient under variance-truncated normality
URI https://link.springer.com/article/10.1007/s00184-023-00918-0
https://www.proquest.com/docview/3066864900
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3BTsMwDIYttF3GAcEAMRhTDtwg0rqmaXOcEGMCwYlJ26lK0-SEOrQOnh-7TTuBAIlbpaY92E39WbF_A1xNbJ4jKDsuZRxzkekx1wiiPEf2N0pZjLhVtcWznC_EwzJa-qawsql2b44kqz912-xG8-MExxjDkQuChGOi3o0wd6dCrsVk2p4d4Pb2GuGksBdGvlXm53d8DUc7xvx2LFpFm9khHHhMZNPar0ewZ4s-7D-1GqtlH3rEibXM8jGs0N0sJxFcP7-KrR3DxazUJP_LDA3hqMve8NpWuhEYbhi1kG3YBybM5H2-3byTSKzNWUEsS4h-AovZ3cvtnPupCdwgTG3R1DGJAlotlRNh5qibxykCA4fb2WjtMoSGiZWRyoTB9FAERmoEkcRi8DdBeAqdYl3YM2CRVlHo4sRiTidiEypjtbNhpjJlZG6jAQSN8VLjJcVpssVr2oohVwZP0eBpZfB0PIDr9pm3WlDjz9XDxiep31xlilmOTKRQY7x90_hpd_v3t53_b_kF9PDzEnVx7hA66AN7iQiyzUbQnd6vHu9G1Zf3CSpi0yE
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ2xTsMwEIYtVAbKgKCAKBTwwAaWmsRx4rFCVAXaTq1UJstx7Am1qCk8P3eJkwoESGyR4ni4s3Pfyb7_CLkJbZ4DKDsmRJIwnuk-0wCiLAf2N1JaiLjlbYupGM350yJe-KKwor7tXh9Jln_qptgN-8dxBjGGARcEKYNEfRdgIMW1PA8HzdkBbG-vEY4Ke1HsS2V-nuNrONoy5rdj0TLaDA_JgcdEOqj8ekR27LJD9ieNxmrRIW3kxEpm-Zi8gLtpjiK4vn8VXTkKg2mhUf6XGmzCUV17g2db6kZAuKFYQramH5Awo_fZZv2OIrE2p0tkWUT0EzIfPszuR8x3TWAGYGoDpk5QFNBqIR2PMofVPE4iGDjYzkZrlwE0hFbEMuMG0kMeGKEBRFILwd8E0SlpLVdLe0ZorGUcuSS1kNPxxETSWO1slMlMGpHbuEuC2njKeElx7Gzxqhox5NLgCgyuSoOrfpfcNt-8VYIaf47u1T5RfnMVCrIckQou-_D6rvbT9vXvs53_b_g12RvNJmM1fpw-X5B2CDhTXdTtkRb4w14Cjmyyq3L1fQKhtdSA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3fS8MwEMeDKMh8EJ2K06l58E3D1jZNm8ehjvlr-OBgPoU0TZ6kG1v17_euv6aigm-FpIXeJdznSO57hJz7Nk0BlB0TIooYT3SfaQBRlgL7GyktRNzitsVYjCb8bhpOP1XxF7fd6yPJsqYBVZqyvDdPXa8pfMNecpxBvGHACF7MIGnf4FgNDCt64g-acwTY6pVeOKrtBWFVNvPzN76GphVvfjsiLSLPcIdsV8hIB6WPd8mazdpk67HRW122SQuZsZRc3iMv4HqaoiBu1cuKzhyFyXSpUQqYGmzIUV6Bg2dbaEjAr1MsJ1vQd0iecSWwfPGGgrE2pRlyLeL6PpkMb56vRqzqoMAMgFUOZo9QINBqIR0PEoeVPU4iJDjY2kZrlwBA-FaEMuEGUkXuGaEBSmILIGC84ICsZ7PMHhIaahkGLoot5Hc8MoE0VjsbJDKRRqQ27BCvNp4ylbw4drl4VY0wcmFwBQZXhcFVv0MumnfmpbjGn7O7tU9UtdGWCjIeEQsu-zB8WftpNfz7147-N_2MbD5dD9XD7fj-mLR8IJvyzm6XrIM77AmQSZ6cFovvAwF02LM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+distribution+of+the+sample+correlation+coefficient+under+variance-truncated+normality&rft.jtitle=Metrika&rft.au=Ogasawara%2C+Haruhiko&rft.date=2024-07-01&rft.issn=0026-1335&rft.eissn=1435-926X&rft.volume=87&rft.issue=5&rft.spage=471&rft.epage=497&rft_id=info:doi/10.1007%2Fs00184-023-00918-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00184_023_00918_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-1335&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-1335&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-1335&client=summon