Higher-order polysulfides induced thermal runaway for 1.0 Ah lithium sulfur pouch cells
Comprehensive analyses on thermal runaway mechanisms are critically vital to achieve the safe lithium–sulfur (Li–S) batteries. The reactions between dissolved higher-order polysulfides and Li metal were found to be the origins for the thermal runaway of 1.0 Ah cycled Li–S pouch cells. 16-cycle pouch...
Saved in:
Published in | Particuology Vol. 79; pp. 10 - 17 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Comprehensive analyses on thermal runaway mechanisms are critically vital to achieve the safe lithium–sulfur (Li–S) batteries. The reactions between dissolved higher-order polysulfides and Li metal were found to be the origins for the thermal runaway of 1.0 Ah cycled Li–S pouch cells. 16-cycle pouch cell indicates high safety, heating from 30 to 300 °C without thermal runaway, while 16-cycle pouch cell with additional electrolyte undergoes severe thermal runaway at 147.9 °C, demonstrating the key roles of the electrolyte on the thermal safety of batteries. On the contrary, thermal runaway does not occur for 45-cycle pouch cell despite the addition of the electrolyte. It is found that the higher-order polysulfides (Li2Sx ≥ 6) are discovered in 16-cycle electrolyte while the sulfur species in 45-cycle electrolyte are Li2Sx ≤ 4. In addition, strong exothermic reactions are discovered between cycled Li and dissolved higher-order polysulfide (Li2S6 and Li2S8) at 153.0 °C, driving the thermal runaway of cycled Li–S pouch cells. This work uncovers the potential safety risks of Li–S batteries and negative roles of the polysulfide shuttle for Li–S batteries from the safety view.
[Display omitted]
•The thermal safety of deeply cycled Li–S pouch cells have been systematically investigated.•Thermal behaviors of 16-cycle cells with/without electrolytes are due to different viscosities.•The thermal safety of 16/45-cycle cells depends on the polysulfides species in electrolytes. |
---|---|
AbstractList | Comprehensive analyses on thermal runaway mechanisms are critically vital to achieve the safe lithium–sulfur (Li–S) batteries. The reactions between dissolved higher-order polysulfides and Li metal were found to be the origins for the thermal runaway of 1.0 Ah cycled Li–S pouch cells. 16-cycle pouch cell indicates high safety, heating from 30 to 300 °C without thermal runaway, while 16-cycle pouch cell with additional electrolyte undergoes severe thermal runaway at 147.9 °C, demonstrating the key roles of the electrolyte on the thermal safety of batteries. On the contrary, thermal runaway does not occur for 45-cycle pouch cell despite the addition of the electrolyte. It is found that the higher-order polysulfides (Li2Sx ≥ 6) are discovered in 16-cycle electrolyte while the sulfur species in 45-cycle electrolyte are Li2Sx ≤ 4. In addition, strong exothermic reactions are discovered between cycled Li and dissolved higher-order polysulfide (Li2S6 and Li2S8) at 153.0 °C, driving the thermal runaway of cycled Li–S pouch cells. This work uncovers the potential safety risks of Li–S batteries and negative roles of the polysulfide shuttle for Li–S batteries from the safety view.
[Display omitted]
•The thermal safety of deeply cycled Li–S pouch cells have been systematically investigated.•Thermal behaviors of 16-cycle cells with/without electrolytes are due to different viscosities.•The thermal safety of 16/45-cycle cells depends on the polysulfides species in electrolytes. |
Author | Liu, He Chen, Zi-Xian Yuan, Hong Zhang, Qiang Yang, Shi-Jie Huang, Jia-Qi Liu, Lei Cheng, Xin-Bing Jiang, Feng-Ni |
Author_xml | – sequence: 1 givenname: Feng-Ni surname: Jiang fullname: Jiang, Feng-Ni organization: College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China – sequence: 2 givenname: Shi-Jie surname: Yang fullname: Yang, Shi-Jie organization: Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China – sequence: 3 givenname: Zi-Xian surname: Chen fullname: Chen, Zi-Xian organization: Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China – sequence: 4 givenname: He surname: Liu fullname: Liu, He organization: Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China – sequence: 5 givenname: Hong surname: Yuan fullname: Yuan, Hong organization: Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China – sequence: 6 givenname: Lei surname: Liu fullname: Liu, Lei organization: College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China – sequence: 7 givenname: Jia-Qi surname: Huang fullname: Huang, Jia-Qi organization: Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China – sequence: 8 givenname: Xin-Bing orcidid: 0000-0001-7567-1210 surname: Cheng fullname: Cheng, Xin-Bing email: chengxb@seu.edu.cn organization: Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 211189, Jiangsu, China – sequence: 9 givenname: Qiang surname: Zhang fullname: Zhang, Qiang organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China |
BookMark | eNqFkNFKwzAUhoNMcFPfwIu8QGuStlnjhTCGOmHgjeJlSJNTm5G1I0mVvb0p88oLvTo_HL7_cL4FmvVDDwjdUJJTQvntLj8oH63OGWEspzQnRJyhOWOUZCUTdIbmlC_LjBFCL9AihB0hnHFWzNH7xn504LPBG_D4MLhjGF1rDQRsezNqMDim_V457MdefakjbgeP0wm86rCzsbPjHk_MOOGj7rAG58IVOm-VC3D9My_R2-PD63qTbV-enterbaaLisVMNBXUelkrzRXltaE1E40SwDQhBtoCGDG8rqoGUhKlIVyD0LplwFklGlFcortTr_ZDCB5aqW1U0Q599Mo6SYmcFMmdPCmSkyJJqUyKElz-gg_e7pU__ofdnzBIj31a8DJoC31yZT3oKM1g_y74Bhf7hkg |
CitedBy_id | crossref_primary_10_1016_j_partic_2023_05_001 crossref_primary_10_1002_batt_202400544 crossref_primary_10_1021_acsami_3c03055 crossref_primary_10_1016_j_jechem_2023_10_016 crossref_primary_10_1002_adma_202307370 crossref_primary_10_1021_acsami_3c08088 crossref_primary_10_1016_j_partic_2023_04_002 crossref_primary_10_1039_D3NR01942J crossref_primary_10_34133_energymatadv_0084 crossref_primary_10_1016_j_partic_2024_09_014 crossref_primary_10_1002_sus2_70004 crossref_primary_10_1007_s12598_024_02631_x crossref_primary_10_1039_D3TA05632E crossref_primary_10_1016_j_jechem_2023_09_030 crossref_primary_10_1016_j_partic_2023_08_020 crossref_primary_10_1016_j_jechem_2024_01_072 crossref_primary_10_1016_j_partic_2023_03_008 crossref_primary_10_1016_j_partic_2024_01_011 crossref_primary_10_1002_metm_6 crossref_primary_10_1016_j_nanoen_2024_110387 crossref_primary_10_1016_j_partic_2024_08_008 crossref_primary_10_1021_acs_iecr_3c02202 crossref_primary_10_1016_j_partic_2024_07_020 crossref_primary_10_1016_j_partic_2024_08_004 crossref_primary_10_1039_D3YA00035D crossref_primary_10_1002_elt2_8 crossref_primary_10_3390_batteries9060296 crossref_primary_10_1016_j_partic_2023_11_006 crossref_primary_10_1016_j_joule_2024_07_002 crossref_primary_10_1016_j_partic_2023_04_005 crossref_primary_10_1016_j_partic_2024_04_007 crossref_primary_10_1002_adma_202312880 crossref_primary_10_1016_j_coelec_2024_101516 crossref_primary_10_1002_idm2_12087 crossref_primary_10_1007_s40820_024_01482_6 crossref_primary_10_1016_j_jechem_2024_11_014 crossref_primary_10_1002_adma_202414047 crossref_primary_10_1007_s11426_023_1866_y crossref_primary_10_1016_j_partic_2023_12_017 crossref_primary_10_1007_s40820_023_01120_7 crossref_primary_10_1016_j_partic_2024_09_009 crossref_primary_10_1007_s12598_023_02417_7 |
Cites_doi | 10.1002/aenm.202003690 10.1016/j.cclet.2021.05.065 10.1016/j.jechem.2020.03.029 10.1016/j.cclet.2018.08.013 10.1088/1361-6528/abe002 10.1002/slct.202003118 10.1039/D2EE01820A 10.1016/j.jechem.2021.12.024 10.1016/j.jpowsour.2021.229503 10.1002/aenm.201802768 10.1038/s41560-022-01001-0 10.1016/j.joule.2022.02.015 10.1149/1945-7111/abe7a2 10.1016/j.ensm.2019.06.036 10.1016/j.partic.2021.01.008 10.1016/j.ensm.2020.04.035 10.1016/j.ensm.2016.01.007 10.1016/j.partic.2020.12.003 10.1021/acsnano.9b06267 10.1002/sus2.74 10.1002/anie.201912701 10.1016/j.joule.2021.06.009 10.1016/j.mtener.2020.100519 10.1016/j.ensm.2020.11.026 10.1016/j.etran.2022.100211 10.1002/adma.202108400 10.1016/j.ensm.2019.04.001 10.1016/j.jechem.2022.01.019 10.1002/eom2.12010 10.1016/j.jechem.2022.05.005 10.1016/j.jechem.2020.06.054 10.1016/j.partic.2021.01.003 10.1016/j.ensm.2018.09.024 10.1016/j.jechem.2020.07.028 10.1016/j.mtener.2017.11.003 10.1002/batt.202000051 10.1016/j.cej.2022.135150 10.1016/j.apenergy.2019.04.009 10.1002/sus2.4 |
ContentType | Journal Article |
Copyright | 2022 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences |
Copyright_xml | – notice: 2022 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.partic.2022.11.009 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2210-4291 |
EndPage | 17 |
ExternalDocumentID | 10_1016_j_partic_2022_11_009 S1674200122002553 |
GroupedDBID | --K --M -02 -0B -S~ .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VR 5VS 6I. 7-5 71M 8P~ 92M 9D9 9DB AABXZ AACTN AAEDT AAEDW AAEPC AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFRF ABJNI ABMAC ABNUV ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADEWK ADEZE ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFUIB AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CAJUS CCEZO CDRFL CHBEP CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EP2 EP3 FA0 FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ J1W JUIAU KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q-- Q38 R-B RIG ROL RT2 SDF SDG SES SPC SPCBC SSG SSM SSZ T5K T8R TCJ TGT U1F U1G U5B U5L UNMZH ~G- ~LO -SB AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CAJEB CITATION EFKBS |
ID | FETCH-LOGICAL-c352t-9b5e8c78ac6a168d1829ba9e2c00def3e20d6855bee2094d06ce9ccf2e6259b93 |
IEDL.DBID | .~1 |
ISSN | 1674-2001 |
IngestDate | Wed Sep 03 02:35:54 EDT 2025 Thu Apr 24 23:12:16 EDT 2025 Fri Feb 23 02:38:49 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Keywords | Polysulfides Lithium–sulfur batteries Pouch cell Polysulfide shuttle Thermal runaway |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-9b5e8c78ac6a168d1829ba9e2c00def3e20d6855bee2094d06ce9ccf2e6259b93 |
ORCID | 0000-0001-7567-1210 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1674200122002553 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1016_j_partic_2022_11_009 crossref_primary_10_1016_j_partic_2022_11_009 elsevier_sciencedirect_doi_10_1016_j_partic_2022_11_009 |
PublicationCentury | 2000 |
PublicationDate | August 2023 2023-08-00 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
PublicationDecade | 2020 |
PublicationTitle | Particuology |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kaiser, Han, Liang, Dou, Wang (bib17) 2019; 19 Hou, Yao, Bi, Xie, Li, Huang, Zhang (bib10) 2022; 68 Liu, Cheng, Chong, Yuan, Huang, Zhang (bib22) 2021; 57 Zhou, Chen, Cui (bib47) 2022; 7 Lu, Cheng, Mao, Zhang, Yuan, Amin, Yang, Cheng, Meng, Wei (bib29) 2020; 2 Liu, Sun, Cheng, Guo, Yu, Bao, Wang, Li, Zhang (bib27) 2022; 12 Lee, Ko, Kang, Chung, Kim, Halim, Lee, Joo (bib20) 2017; 6 Bilal, Eroglu (bib1) 2021; 168 Liu, Jia, Yuan, Wang, Gao, Yin, Xu (bib25) 2020; 24 Feng, Zheng, Ren, He, Wang, Cui, Liu, Jin, Zhang, Xu, Hsu, Gao, Chen, Li, Wang, Wang, Li, Ouyang (bib6) 2019; 246 Yuan, Peng, Li, Xie, Kong, Zhao, Chen, Huang, Zhang (bib44) 2019; 9 . Cheng, Liu, Yuan, Peng, Tang, Huang, Zhang (bib3) 2021; 1 Huang, Xiao, Han, Xue, Wang, Meng (bib12) 2021; 489 Xu, Cheng, Jiang, Yang, Ren, Shi, Hsu, Yuan, Huang, Ouyang, Zhang (bib37) 2022; 2 Xu, Jiang, Yang, Xiao, Liu, Liu, Liu, Cheng (bib38) 2022; 69 Zhao, Cheng, Zhang, Peng, Huang, Ran, Huang, Wei, Zhang (bib46) 2016; 3 Zhou, Li, Jiang, Ding, He, Guo, Chu, Yu (bib48) 2021; 31 Huang, Xue, Xiao, Wang, Li, Zhang, Meng (bib13) 2020; 30 Liu, Cresce, Schroeder, Xu, Mu, Wu, Shi, Wu (bib23) 2019; 17 Yang, Chen, Hu, Deng, Zhang, Yang (bib40) 2018; 29 Chen, Li, Zhao, Zhao, Yuan, Sun, Huang, Zhang (bib4) 2020; 59 Han, Zhao, Xiao, Zhong, Sheng, Lv, Zhang, Zhou, Cheng (bib8) 2021; 33 Peng, Zhang, Chen, Zhang, Jiang, Chen, Zhang, Zeng, Sa, Wei, Lin, Guo (bib30) 2020; 18 Li, Zhang, Sheng, Chen, Gao, Piao, Zhong, Han, Zhu, Wang, Zhou, Cheng (bib28) 2022; 15 Chen, Zhong, Zhou, Zhao, Cheng (bib5) 2022; 34 Ji, Jia, Wang, Duan, Li, Liu, Zhang (bib16) 2021; 32 Wang, Ke, Shen, Zhu, Yuan (bib34) 2021; 7 Yan, Chen, Fan, Lin, Fan, Feng, Wang, Xu, You, Yang (bib39) 2020; 5 Li, Shapter, Cheng, Xu, Gao (bib21) 2021; 58 Liu, Elias, Meng, Aurbach, Zou, Xia, Pang (bib24) 2021; 5 Shen, Zhang, Ding, Huang, Xu, Chen, Yan, Su, Chen, Liu, Zhang (bib33) 2021; 1 Yang, Yao, Xu, Jiang, Chen, Liu, Yuan, Huang, Cheng (bib42) 2021; 9 Cai, Jin, Zhao, Ma, Zhang (bib2) 2022; 33 Wang, Song, Sun, Shao, Wei, Xia, Tian, Liu, Sun (bib35) 2019; 13 Zhang, Li, Li, Yang (bib45) 2018; 8 Lai, Jin, Yi, Han, Feng, Zheng, Ouyang (bib19) 2021; 35 Wang, Yuan, Zhu, Wang, Huang, Wang, Xu (bib36) 2021; 55 Jiang, F.-N., Yang, S.-J., Cheng, X.-B., Yuan, H., Liu, L., Huang, J.-Q. & Zhang, Q. (2023). An interface-contact regulation renders thermally safe lithium metal batteries. eTransportation, 15. Article 100211. He, Rao, Cheng, Liu, He, Chen, Miao, Yuan, Li, Huang (bib9) 2021; 11 Yuan, Nan, Zhao, Zhu, Lu, Cheng, Liu, He, Huang, Zhang (bib43) 2020; 3 Jiang, Yang, Cheng, Shi, Ding, Chen, Yuan, Liu, Huang, Zhang (bib14) 2022; 72 Gu, Lu, Chen, Qi, Zhang (bib7) 2021; 57 Huang, Lu, Xu, Zhang, Jiang, Zhang, Wang, Han, Cui, Chen (bib11) 2022; 6 Kong, Yin, Xu, Bian, Yuan, Lu, Zhao (bib18) 2021; 55 Piao, Xiao, Luo, Ma, Gao, Li, Tan, Yu, Zhou, Cheng (bib31) 2022; 34 Ren, Wang, Yang, Xu, Lei, Zhang, Wen, Gu, Chao, Jin (bib32) 2022; 437 Yang, Yao, Jiang, Xie, Sun, Chen, Yuan, Cheng, Huang, Zhang (bib41) 2022 Liu, Ma, Wei, Bai, Liu, Xu, Shan, Wang (bib26) 2021; 52 Kong (10.1016/j.partic.2022.11.009_bib18) 2021; 55 Cheng (10.1016/j.partic.2022.11.009_bib3) 2021; 1 Liu (10.1016/j.partic.2022.11.009_bib26) 2021; 52 Bilal (10.1016/j.partic.2022.11.009_bib1) 2021; 168 Cai (10.1016/j.partic.2022.11.009_bib2) 2022; 33 Wang (10.1016/j.partic.2022.11.009_bib34) 2021; 7 Peng (10.1016/j.partic.2022.11.009_bib30) 2020; 18 Ji (10.1016/j.partic.2022.11.009_bib16) 2021; 32 Yang (10.1016/j.partic.2022.11.009_bib42) 2021; 9 Liu (10.1016/j.partic.2022.11.009_bib22) 2021; 57 Zhao (10.1016/j.partic.2022.11.009_bib46) 2016; 3 Jiang (10.1016/j.partic.2022.11.009_bib14) 2022; 72 Liu (10.1016/j.partic.2022.11.009_bib24) 2021; 5 Zhou (10.1016/j.partic.2022.11.009_bib47) 2022; 7 Liu (10.1016/j.partic.2022.11.009_bib25) 2020; 24 Han (10.1016/j.partic.2022.11.009_bib8) 2021; 33 Li (10.1016/j.partic.2022.11.009_bib28) 2022; 15 Liu (10.1016/j.partic.2022.11.009_bib23) 2019; 17 Yang (10.1016/j.partic.2022.11.009_bib40) 2018; 29 Liu (10.1016/j.partic.2022.11.009_bib27) 2022; 12 Wang (10.1016/j.partic.2022.11.009_bib36) 2021; 55 Ren (10.1016/j.partic.2022.11.009_bib32) 2022; 437 Feng (10.1016/j.partic.2022.11.009_bib6) 2019; 246 Kaiser (10.1016/j.partic.2022.11.009_bib17) 2019; 19 Wang (10.1016/j.partic.2022.11.009_bib35) 2019; 13 Chen (10.1016/j.partic.2022.11.009_bib4) 2020; 59 Huang (10.1016/j.partic.2022.11.009_bib13) 2020; 30 Chen (10.1016/j.partic.2022.11.009_bib5) 2022; 34 Yang (10.1016/j.partic.2022.11.009_bib41) 2022 10.1016/j.partic.2022.11.009_bib15 Gu (10.1016/j.partic.2022.11.009_bib7) 2021; 57 Yan (10.1016/j.partic.2022.11.009_bib39) 2020; 5 Huang (10.1016/j.partic.2022.11.009_bib12) 2021; 489 Li (10.1016/j.partic.2022.11.009_bib21) 2021; 58 Lu (10.1016/j.partic.2022.11.009_bib29) 2020; 2 Xu (10.1016/j.partic.2022.11.009_bib38) 2022; 69 Lai (10.1016/j.partic.2022.11.009_bib19) 2021; 35 Yuan (10.1016/j.partic.2022.11.009_bib43) 2020; 3 Lee (10.1016/j.partic.2022.11.009_bib20) 2017; 6 Zhang (10.1016/j.partic.2022.11.009_bib45) 2018; 8 Huang (10.1016/j.partic.2022.11.009_bib11) 2022; 6 Yuan (10.1016/j.partic.2022.11.009_bib44) 2019; 9 Hou (10.1016/j.partic.2022.11.009_bib10) 2022; 68 Piao (10.1016/j.partic.2022.11.009_bib31) 2022; 34 Xu (10.1016/j.partic.2022.11.009_bib37) 2022; 2 Zhou (10.1016/j.partic.2022.11.009_bib48) 2021; 31 Shen (10.1016/j.partic.2022.11.009_bib33) 2021; 1 He (10.1016/j.partic.2022.11.009_bib9) 2021; 11 |
References_xml | – volume: 7 start-page: 312 year: 2022 end-page: 319 ident: bib47 article-title: Formulating energy density for designing practical lithium–sulfur batteries publication-title: Nature Energy – volume: 3 start-page: 77 year: 2016 end-page: 84 ident: bib46 article-title: Li publication-title: Energy Storage Materials – volume: 57 start-page: 139 year: 2021 end-page: 145 ident: bib7 article-title: Three-dimensional architectures based on carbon nanotube bridged Ti publication-title: Particuology – volume: 69 start-page: 205 year: 2022 end-page: 210 ident: bib38 article-title: Dual-layer vermiculite nanosheet based hybrid film to suppress dendrite growth in lithium metal batteries publication-title: Journal of Energy Chemistry – volume: 34 year: 2022 ident: bib5 article-title: Graphene-supported atomically dispersed metals as bifunctional catalysts for next-generation batteries based on conversion reactions publication-title: Advanced Materials – volume: 55 start-page: 80 year: 2021 end-page: 91 ident: bib18 article-title: Electrolyte solvation chemistry for lithium–sulfur batteries with electrolyte-lean conditions publication-title: Journal of Energy Chemistry – volume: 32 year: 2021 ident: bib16 article-title: Strong adsorption, catalysis and lithiophilic modulation of carbon nitride for lithium/sulfur battery publication-title: Nanotechnology – volume: 17 start-page: 366 year: 2019 end-page: 373 ident: bib23 article-title: Insight on lithium metal anode interphasial chemistry: Reduction mechanism of cyclic ether solvent and SEI film formation publication-title: Energy Storage Materials – volume: 34 year: 2022 ident: bib31 article-title: Constructing a stable interface layer by tailoring solvation chemistry in carbonate electrolytes for high-performance lithium-metal batteries publication-title: Advanced Materials – volume: 29 start-page: 1777 year: 2018 end-page: 1780 ident: bib40 article-title: High performance lithium-sulfur batteries by facilely coating a conductive carbon nanotube or graphene layer publication-title: Chinese Chemical Letters – volume: 35 start-page: 470 year: 2021 end-page: 499 ident: bib19 article-title: Mechanism, modeling, detection, and prevention of the internal short circuit in lithium-ion batteries: Recent advances and perspectives publication-title: Energy Storage Materials – volume: 59 start-page: 10732 year: 2020 end-page: 10745 ident: bib4 article-title: Electrolyte regulation towards stable lithium-metal anodes in lithium-sulfur batteries with sulfurized polyacrylonitrile cathodes publication-title: Angewandte Chemie International Edition – volume: 55 start-page: 484 year: 2021 end-page: 498 ident: bib36 article-title: Overcharge-to-thermal-runaway behavior and safety assessment of commercial lithium-ion cells with different cathode materials: A comparison study publication-title: Journal of Energy Chemistry – volume: 6 start-page: 1 year: 2022 end-page: 17 ident: bib11 article-title: Thermal runaway routes of large-format lithium-sulfur pouch cell batteries publication-title: Joule – volume: 30 start-page: 87 year: 2020 end-page: 97 ident: bib13 article-title: Comprehensive evaluation of safety performance and failure mechanism analysis for lithium sulfur pouch cells publication-title: Energy Storage Materials – volume: 33 start-page: 457 year: 2022 end-page: 461 ident: bib2 article-title: Mitigating side reaction for high capacity retention in lithium-sulfur batteries publication-title: Chinese Chemical Letters – volume: 15 start-page: 4289 year: 2022 end-page: 4300 ident: bib28 article-title: A quasi-intercalation reaction for fast sulfur redox kinetics in solid-state lithium–sulfur batteries publication-title: Energy & Environmental Science – volume: 31 year: 2021 ident: bib48 article-title: Pulverizing Fe publication-title: Advanced Functional Materials – volume: 52 start-page: 20 year: 2021 end-page: 27 ident: bib26 article-title: Study about thermal runaway behavior of high specific energy density Li-ion batteries in a low state of charge publication-title: Journal of Energy Chemistry – volume: 58 start-page: 1 year: 2021 end-page: 15 ident: bib21 article-title: Recent progress in sulfur cathodes for application to lithium–sulfur batteries publication-title: Particuology – volume: 13 start-page: 13235 year: 2019 end-page: 13243 ident: bib35 article-title: Conductive and catalytic VTe publication-title: ACS Nano – volume: 33 year: 2021 ident: bib8 article-title: Engineering d-p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li-S batteries publication-title: Advanced Materials – volume: 6 start-page: 255 year: 2017 end-page: 263 ident: bib20 article-title: Facile and scalable fabrication of highly loaded sulfur cathodes and lithium–sulfur pouch cells via air-controlled electrospray publication-title: Materials Today Energy – volume: 57 start-page: 56 year: 2021 end-page: 71 ident: bib22 article-title: Advanced electrode processing of lithium ion batteries: A review of powder technology in battery fabrication publication-title: Particuology – volume: 68 start-page: 300 year: 2022 end-page: 305 ident: bib10 article-title: High-valence sulfur-containing species in solid electrolyte interphase stabilizes lithium metal anodes in lithium–sulfur batteries publication-title: Journal of Energy Chemistry – volume: 7 year: 2021 ident: bib34 article-title: A critical review on materials and fabrications of thermally stable separators for lithium-ion batteries publication-title: Advanced Materials Technologies – volume: 11 year: 2021 ident: bib9 article-title: Rationally design a sulfur cathode with solid-phase conversion mechanism for high cycle-stable Li–S batteries publication-title: Advanced Energy Materials – volume: 489 year: 2021 ident: bib12 article-title: Thermal runaway features of lithium sulfur pouch cells at various states of charge evaluated by extended volume-accelerating rate calorimetry publication-title: Journal of Power Sources – year: 2022 ident: bib41 article-title: Thermally stable polymer-rich solid electrolyte interphase for safe lithium metal pouch cells publication-title: Angewandte Chemie International Edition – reference: Jiang, F.-N., Yang, S.-J., Cheng, X.-B., Yuan, H., Liu, L., Huang, J.-Q. & Zhang, Q. (2023). An interface-contact regulation renders thermally safe lithium metal batteries. eTransportation, 15. Article 100211. – volume: 168 year: 2021 ident: bib1 article-title: Assessment of Li-S battery performance as a function of electrolyte-to-sulfur ratio publication-title: Journal of the Electrochemical Society – volume: 12 year: 2022 ident: bib27 article-title: Working principles of lithium metal anode in pouch cells publication-title: Advanced Energy Materials – volume: 1 year: 2021 ident: bib33 article-title: Advanced electrode materials in lithium batteries: Retrospect and prospect publication-title: Energy Material Advances – volume: 9 year: 2019 ident: bib44 article-title: Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries publication-title: Advanced Energy Materials – volume: 1 start-page: 38 year: 2021 end-page: 50 ident: bib3 article-title: A perspective on sustainable energy materials for lithium batteries publication-title: SusMat – volume: 246 start-page: 53 year: 2019 end-page: 64 ident: bib6 article-title: Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database publication-title: Applied Energy – volume: 72 start-page: 158 year: 2022 end-page: 165 ident: bib14 article-title: Thermal safety of dendritic lithium against non-aqueous electrolyte in pouch-type lithium metal batteries publication-title: Journal of Energy Chemistry – volume: 5 start-page: 12020 year: 2020 end-page: 12027 ident: bib39 article-title: Effects of activation process on catkin derived carbon materials and its electrochemical performance as matrix in cathode of Li-S battery publication-title: ChemistrySelect – volume: 19 start-page: 1 year: 2019 end-page: 15 ident: bib17 article-title: Lithium sulfide-based cathode for lithium-ion/sulfur battery: Recent progress and challenges publication-title: Energy Storage Materials – volume: 24 start-page: 85 year: 2020 end-page: 112 ident: bib25 article-title: Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: A review publication-title: Energy Storage Materials – volume: 18 year: 2020 ident: bib30 article-title: Reducing polarization of lithium-sulfur batteries via ZnS/reduced graphene oxide accelerated lithium polysulfide conversion publication-title: Materials Today Energy – volume: 2 year: 2020 ident: bib29 article-title: Nitrogen-doped nanoarray-modified 3D hierarchical graphene as a cofunction host for high-performance flexible Li-S battery publication-title: EcoMat – volume: 437 year: 2022 ident: bib32 article-title: Metal-porphyrin frameworks supported by carbon nanotubes: Efficient polysulfide electrocatalysts for lithium-sulfur batteries publication-title: Chemical Engineering Journal – reference: . – volume: 9 year: 2021 ident: bib42 article-title: Formation mechanism of the solid electrolyte interphase in different ester electrolytes publication-title: Journal of Materials Chemistry – volume: 8 year: 2018 ident: bib45 article-title: Mesoporous hybrid electrolyte for simultaneously inhibiting lithium dendrites and polysulfide shuttle in Li-S batteries publication-title: Advanced Energy Materials – volume: 5 start-page: 2323 year: 2021 end-page: 2364 ident: bib24 article-title: Electrolyte solutions design for lithium-sulfur batteries publication-title: Joule – volume: 3 start-page: 596 year: 2020 end-page: 603 ident: bib43 article-title: Slurry-coated sulfur/sulfide cathode with Li metal anode for all-solid-state lithium-sulfur pouch cells publication-title: Batteries & Supercaps – volume: 2 start-page: 435 year: 2022 end-page: 444 ident: bib37 article-title: Dendrite-accelerated thermal runaway mechanisms oflithium metal pouch batteries publication-title: SusMat – volume: 11 year: 2021 ident: 10.1016/j.partic.2022.11.009_bib9 article-title: Rationally design a sulfur cathode with solid-phase conversion mechanism for high cycle-stable Li–S batteries publication-title: Advanced Energy Materials doi: 10.1002/aenm.202003690 – volume: 33 start-page: 457 year: 2022 ident: 10.1016/j.partic.2022.11.009_bib2 article-title: Mitigating side reaction for high capacity retention in lithium-sulfur batteries publication-title: Chinese Chemical Letters doi: 10.1016/j.cclet.2021.05.065 – volume: 52 start-page: 20 year: 2021 ident: 10.1016/j.partic.2022.11.009_bib26 article-title: Study about thermal runaway behavior of high specific energy density Li-ion batteries in a low state of charge publication-title: Journal of Energy Chemistry doi: 10.1016/j.jechem.2020.03.029 – volume: 29 start-page: 1777 year: 2018 ident: 10.1016/j.partic.2022.11.009_bib40 article-title: High performance lithium-sulfur batteries by facilely coating a conductive carbon nanotube or graphene layer publication-title: Chinese Chemical Letters doi: 10.1016/j.cclet.2018.08.013 – volume: 32 year: 2021 ident: 10.1016/j.partic.2022.11.009_bib16 article-title: Strong adsorption, catalysis and lithiophilic modulation of carbon nitride for lithium/sulfur battery publication-title: Nanotechnology doi: 10.1088/1361-6528/abe002 – volume: 5 start-page: 12020 year: 2020 ident: 10.1016/j.partic.2022.11.009_bib39 article-title: Effects of activation process on catkin derived carbon materials and its electrochemical performance as matrix in cathode of Li-S battery publication-title: ChemistrySelect doi: 10.1002/slct.202003118 – volume: 15 start-page: 4289 year: 2022 ident: 10.1016/j.partic.2022.11.009_bib28 article-title: A quasi-intercalation reaction for fast sulfur redox kinetics in solid-state lithium–sulfur batteries publication-title: Energy & Environmental Science doi: 10.1039/D2EE01820A – volume: 68 start-page: 300 year: 2022 ident: 10.1016/j.partic.2022.11.009_bib10 article-title: High-valence sulfur-containing species in solid electrolyte interphase stabilizes lithium metal anodes in lithium–sulfur batteries publication-title: Journal of Energy Chemistry doi: 10.1016/j.jechem.2021.12.024 – volume: 12 year: 2022 ident: 10.1016/j.partic.2022.11.009_bib27 article-title: Working principles of lithium metal anode in pouch cells publication-title: Advanced Energy Materials – volume: 489 year: 2021 ident: 10.1016/j.partic.2022.11.009_bib12 article-title: Thermal runaway features of lithium sulfur pouch cells at various states of charge evaluated by extended volume-accelerating rate calorimetry publication-title: Journal of Power Sources doi: 10.1016/j.jpowsour.2021.229503 – volume: 9 year: 2019 ident: 10.1016/j.partic.2022.11.009_bib44 article-title: Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries publication-title: Advanced Energy Materials doi: 10.1002/aenm.201802768 – volume: 7 start-page: 312 year: 2022 ident: 10.1016/j.partic.2022.11.009_bib47 article-title: Formulating energy density for designing practical lithium–sulfur batteries publication-title: Nature Energy doi: 10.1038/s41560-022-01001-0 – volume: 6 start-page: 1 year: 2022 ident: 10.1016/j.partic.2022.11.009_bib11 article-title: Thermal runaway routes of large-format lithium-sulfur pouch cell batteries publication-title: Joule doi: 10.1016/j.joule.2022.02.015 – volume: 168 year: 2021 ident: 10.1016/j.partic.2022.11.009_bib1 article-title: Assessment of Li-S battery performance as a function of electrolyte-to-sulfur ratio publication-title: Journal of the Electrochemical Society doi: 10.1149/1945-7111/abe7a2 – volume: 24 start-page: 85 year: 2020 ident: 10.1016/j.partic.2022.11.009_bib25 article-title: Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: A review publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2019.06.036 – volume: 7 year: 2021 ident: 10.1016/j.partic.2022.11.009_bib34 article-title: A critical review on materials and fabrications of thermally stable separators for lithium-ion batteries publication-title: Advanced Materials Technologies – volume: 58 start-page: 1 year: 2021 ident: 10.1016/j.partic.2022.11.009_bib21 article-title: Recent progress in sulfur cathodes for application to lithium–sulfur batteries publication-title: Particuology doi: 10.1016/j.partic.2021.01.008 – volume: 30 start-page: 87 year: 2020 ident: 10.1016/j.partic.2022.11.009_bib13 article-title: Comprehensive evaluation of safety performance and failure mechanism analysis for lithium sulfur pouch cells publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2020.04.035 – volume: 3 start-page: 77 year: 2016 ident: 10.1016/j.partic.2022.11.009_bib46 article-title: Li2S5-based ternary-salt electrolyte for robust lithium metal anode publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2016.01.007 – volume: 57 start-page: 56 year: 2021 ident: 10.1016/j.partic.2022.11.009_bib22 article-title: Advanced electrode processing of lithium ion batteries: A review of powder technology in battery fabrication publication-title: Particuology doi: 10.1016/j.partic.2020.12.003 – volume: 1 year: 2021 ident: 10.1016/j.partic.2022.11.009_bib33 article-title: Advanced electrode materials in lithium batteries: Retrospect and prospect publication-title: Energy Material Advances – volume: 13 start-page: 13235 year: 2019 ident: 10.1016/j.partic.2022.11.009_bib35 article-title: Conductive and catalytic VTe2@MgO heterostructure as effective polysulfide promotor for lithium–sulfur batteries publication-title: ACS Nano doi: 10.1021/acsnano.9b06267 – volume: 2 start-page: 435 year: 2022 ident: 10.1016/j.partic.2022.11.009_bib37 article-title: Dendrite-accelerated thermal runaway mechanisms oflithium metal pouch batteries publication-title: SusMat doi: 10.1002/sus2.74 – volume: 59 start-page: 10732 year: 2020 ident: 10.1016/j.partic.2022.11.009_bib4 article-title: Electrolyte regulation towards stable lithium-metal anodes in lithium-sulfur batteries with sulfurized polyacrylonitrile cathodes publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.201912701 – volume: 5 start-page: 2323 year: 2021 ident: 10.1016/j.partic.2022.11.009_bib24 article-title: Electrolyte solutions design for lithium-sulfur batteries publication-title: Joule doi: 10.1016/j.joule.2021.06.009 – volume: 18 year: 2020 ident: 10.1016/j.partic.2022.11.009_bib30 article-title: Reducing polarization of lithium-sulfur batteries via ZnS/reduced graphene oxide accelerated lithium polysulfide conversion publication-title: Materials Today Energy doi: 10.1016/j.mtener.2020.100519 – volume: 35 start-page: 470 year: 2021 ident: 10.1016/j.partic.2022.11.009_bib19 article-title: Mechanism, modeling, detection, and prevention of the internal short circuit in lithium-ion batteries: Recent advances and perspectives publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2020.11.026 – ident: 10.1016/j.partic.2022.11.009_bib15 doi: 10.1016/j.etran.2022.100211 – year: 2022 ident: 10.1016/j.partic.2022.11.009_bib41 article-title: Thermally stable polymer-rich solid electrolyte interphase for safe lithium metal pouch cells publication-title: Angewandte Chemie International Edition – volume: 34 year: 2022 ident: 10.1016/j.partic.2022.11.009_bib31 article-title: Constructing a stable interface layer by tailoring solvation chemistry in carbonate electrolytes for high-performance lithium-metal batteries publication-title: Advanced Materials doi: 10.1002/adma.202108400 – volume: 33 year: 2021 ident: 10.1016/j.partic.2022.11.009_bib8 article-title: Engineering d-p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li-S batteries publication-title: Advanced Materials – volume: 19 start-page: 1 year: 2019 ident: 10.1016/j.partic.2022.11.009_bib17 article-title: Lithium sulfide-based cathode for lithium-ion/sulfur battery: Recent progress and challenges publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2019.04.001 – volume: 69 start-page: 205 year: 2022 ident: 10.1016/j.partic.2022.11.009_bib38 article-title: Dual-layer vermiculite nanosheet based hybrid film to suppress dendrite growth in lithium metal batteries publication-title: Journal of Energy Chemistry doi: 10.1016/j.jechem.2022.01.019 – volume: 34 year: 2022 ident: 10.1016/j.partic.2022.11.009_bib5 article-title: Graphene-supported atomically dispersed metals as bifunctional catalysts for next-generation batteries based on conversion reactions publication-title: Advanced Materials – volume: 2 year: 2020 ident: 10.1016/j.partic.2022.11.009_bib29 article-title: Nitrogen-doped nanoarray-modified 3D hierarchical graphene as a cofunction host for high-performance flexible Li-S battery publication-title: EcoMat doi: 10.1002/eom2.12010 – volume: 72 start-page: 158 year: 2022 ident: 10.1016/j.partic.2022.11.009_bib14 article-title: Thermal safety of dendritic lithium against non-aqueous electrolyte in pouch-type lithium metal batteries publication-title: Journal of Energy Chemistry doi: 10.1016/j.jechem.2022.05.005 – volume: 55 start-page: 80 year: 2021 ident: 10.1016/j.partic.2022.11.009_bib18 article-title: Electrolyte solvation chemistry for lithium–sulfur batteries with electrolyte-lean conditions publication-title: Journal of Energy Chemistry doi: 10.1016/j.jechem.2020.06.054 – volume: 31 year: 2021 ident: 10.1016/j.partic.2022.11.009_bib48 article-title: Pulverizing Fe2O3 nanoparticles for developing Fe3C/N-codoped carbon nanoboxes with multiple polysulfide anchoring and converting activity in Li-S batteries publication-title: Advanced Functional Materials – volume: 57 start-page: 139 year: 2021 ident: 10.1016/j.partic.2022.11.009_bib7 article-title: Three-dimensional architectures based on carbon nanotube bridged Ti2C MXene nanosheets for Li–S batteries publication-title: Particuology doi: 10.1016/j.partic.2021.01.003 – volume: 17 start-page: 366 year: 2019 ident: 10.1016/j.partic.2022.11.009_bib23 article-title: Insight on lithium metal anode interphasial chemistry: Reduction mechanism of cyclic ether solvent and SEI film formation publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2018.09.024 – volume: 55 start-page: 484 year: 2021 ident: 10.1016/j.partic.2022.11.009_bib36 article-title: Overcharge-to-thermal-runaway behavior and safety assessment of commercial lithium-ion cells with different cathode materials: A comparison study publication-title: Journal of Energy Chemistry doi: 10.1016/j.jechem.2020.07.028 – volume: 6 start-page: 255 year: 2017 ident: 10.1016/j.partic.2022.11.009_bib20 article-title: Facile and scalable fabrication of highly loaded sulfur cathodes and lithium–sulfur pouch cells via air-controlled electrospray publication-title: Materials Today Energy doi: 10.1016/j.mtener.2017.11.003 – volume: 9 year: 2021 ident: 10.1016/j.partic.2022.11.009_bib42 article-title: Formation mechanism of the solid electrolyte interphase in different ester electrolytes publication-title: Journal of Materials Chemistry – volume: 3 start-page: 596 year: 2020 ident: 10.1016/j.partic.2022.11.009_bib43 article-title: Slurry-coated sulfur/sulfide cathode with Li metal anode for all-solid-state lithium-sulfur pouch cells publication-title: Batteries & Supercaps doi: 10.1002/batt.202000051 – volume: 437 year: 2022 ident: 10.1016/j.partic.2022.11.009_bib32 article-title: Metal-porphyrin frameworks supported by carbon nanotubes: Efficient polysulfide electrocatalysts for lithium-sulfur batteries publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2022.135150 – volume: 246 start-page: 53 year: 2019 ident: 10.1016/j.partic.2022.11.009_bib6 article-title: Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database publication-title: Applied Energy doi: 10.1016/j.apenergy.2019.04.009 – volume: 1 start-page: 38 year: 2021 ident: 10.1016/j.partic.2022.11.009_bib3 article-title: A perspective on sustainable energy materials for lithium batteries publication-title: SusMat doi: 10.1002/sus2.4 – volume: 8 year: 2018 ident: 10.1016/j.partic.2022.11.009_bib45 article-title: Mesoporous hybrid electrolyte for simultaneously inhibiting lithium dendrites and polysulfide shuttle in Li-S batteries publication-title: Advanced Energy Materials |
SSID | ssj0062623 |
Score | 2.5091126 |
Snippet | Comprehensive analyses on thermal runaway mechanisms are critically vital to achieve the safe lithium–sulfur (Li–S) batteries. The reactions between dissolved... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 10 |
SubjectTerms | Lithium–sulfur batteries Polysulfide shuttle Polysulfides Pouch cell Thermal runaway |
Title | Higher-order polysulfides induced thermal runaway for 1.0 Ah lithium sulfur pouch cells |
URI | https://dx.doi.org/10.1016/j.partic.2022.11.009 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9DX_RB_MT5MfLga7Y2a9P2cQzHVNyLDvdWkjRlla0r24rsxb_du36MCaLgWwm5EC7H5Xfp7-4IuVOOp6VjS4ZZjfh0I5jvSMF4FCkDiMP4Mb53PI_EcOw8TtxJg_TrXBikVVa-v_TphbeuRjqVNjtZknRekD_Pi19DBTDGip-O46GVtz-3NA_A60WLN5yMFmHX6XMFxysrFoQokfM21vJEWuJP19POlTM4JkcVVqS9cjsnpGHSU3K4U0HwjLyVPA1WVNCk2WK2WeWzOInMikKwDccWUUR4c1hmmafyQ24ooFQKm6C9KQUIPk3yOUWZHMVzPaX4lL86J-PB_Wt_yKpeCUwDhFqzQLnG154vtZC28CMIGwIlA8O1ZUUm7hpuRcJ3XWXgK3AiS2gTaB1zgwGQCroXZC9dpOaSUK4wVBVaaLy6fF9p43E4UxMHTmwL0STdWkWhrgqJYz-LWVgzxt7DUrEhKhZijBAU2yRsK5WVhTT-mO_V2g-_GUQIvv5Xyat_S16TA-wmX_L7bsjeepmbW8Aca9UqjKpF9nsPT8PRF9DU1tU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb8IwDLYYHLYdpj019sxh1442tKE9IjTExuMy0LhVTZoKJigIqCb-_ew-JiZNm7RbFcVR5ET2Z_eLDfAg7YYKbCsw6FUjpW6E4dqBMHgYSo2IQ7sR5Tv6A9EZ2S9jZ1yCVvEWhmiVue3PbHpqrfORWq7N2nI6rb0Sf56nv4ZSYFzfgwpVp3LKUGk-dzuDwiAjZE-7vNF8uhRW8YIupXkt0zUxUOT8kcp5EjPxJw-143Xax3CUw0XWzHZ0AiUdn8LhThHBM3jLqBpGWkSTLRez7TqZRdNQrxnG23hyISOQN8dlVkkcfARbhkCV4SZYc8IQhU-myZyRTELiiZowyuavz2HUfhq2OkbeLsFQiKI2hicd7aqGGygRWMINMXLwZOBprkwz1FFdczMUruNIjV-eHZpCaU-piGuKgaRXv4ByvIj1JTAuKVoVSijyXq4rlW5wPFYdeXZkCVGFeqEiX-W1xKmlxcwvSGPvfqZYnxSLYYaPiq2C8SW1zGpp_DG_UWjf_3YnfDT3v0pe_VvyHvY7w37P7z0PutdwQM3lM7rfDZQ3q0TfIgTZyLv8in0COQDZhg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Higher-order+polysulfides+induced+thermal+runaway+for+1.0+Ah+lithium+sulfur+pouch+cells&rft.jtitle=Particuology&rft.au=Jiang%2C+Feng-Ni&rft.au=Yang%2C+Shi-Jie&rft.au=Chen%2C+Zi-Xian&rft.au=Liu%2C+He&rft.date=2023-08-01&rft.pub=Elsevier+B.V&rft.issn=1674-2001&rft.eissn=2210-4291&rft.volume=79&rft.spage=10&rft.epage=17&rft_id=info:doi/10.1016%2Fj.partic.2022.11.009&rft.externalDocID=S1674200122002553 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-2001&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-2001&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-2001&client=summon |