Higher-order polysulfides induced thermal runaway for 1.0 Ah lithium sulfur pouch cells

Comprehensive analyses on thermal runaway mechanisms are critically vital to achieve the safe lithium–sulfur (Li–S) batteries. The reactions between dissolved higher-order polysulfides and Li metal were found to be the origins for the thermal runaway of 1.0 Ah cycled Li–S pouch cells. 16-cycle pouch...

Full description

Saved in:
Bibliographic Details
Published inParticuology Vol. 79; pp. 10 - 17
Main Authors Jiang, Feng-Ni, Yang, Shi-Jie, Chen, Zi-Xian, Liu, He, Yuan, Hong, Liu, Lei, Huang, Jia-Qi, Cheng, Xin-Bing, Zhang, Qiang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Comprehensive analyses on thermal runaway mechanisms are critically vital to achieve the safe lithium–sulfur (Li–S) batteries. The reactions between dissolved higher-order polysulfides and Li metal were found to be the origins for the thermal runaway of 1.0 Ah cycled Li–S pouch cells. 16-cycle pouch cell indicates high safety, heating from 30 to 300 °C without thermal runaway, while 16-cycle pouch cell with additional electrolyte undergoes severe thermal runaway at 147.9 °C, demonstrating the key roles of the electrolyte on the thermal safety of batteries. On the contrary, thermal runaway does not occur for 45-cycle pouch cell despite the addition of the electrolyte. It is found that the higher-order polysulfides (Li2Sx ≥ 6) are discovered in 16-cycle electrolyte while the sulfur species in 45-cycle electrolyte are Li2Sx ≤ 4. In addition, strong exothermic reactions are discovered between cycled Li and dissolved higher-order polysulfide (Li2S6 and Li2S8) at 153.0 °C, driving the thermal runaway of cycled Li–S pouch cells. This work uncovers the potential safety risks of Li–S batteries and negative roles of the polysulfide shuttle for Li–S batteries from the safety view. [Display omitted] •The thermal safety of deeply cycled Li–S pouch cells have been systematically investigated.•Thermal behaviors of 16-cycle cells with/without electrolytes are due to different viscosities.•The thermal safety of 16/45-cycle cells depends on the polysulfides species in electrolytes.
AbstractList Comprehensive analyses on thermal runaway mechanisms are critically vital to achieve the safe lithium–sulfur (Li–S) batteries. The reactions between dissolved higher-order polysulfides and Li metal were found to be the origins for the thermal runaway of 1.0 Ah cycled Li–S pouch cells. 16-cycle pouch cell indicates high safety, heating from 30 to 300 °C without thermal runaway, while 16-cycle pouch cell with additional electrolyte undergoes severe thermal runaway at 147.9 °C, demonstrating the key roles of the electrolyte on the thermal safety of batteries. On the contrary, thermal runaway does not occur for 45-cycle pouch cell despite the addition of the electrolyte. It is found that the higher-order polysulfides (Li2Sx ≥ 6) are discovered in 16-cycle electrolyte while the sulfur species in 45-cycle electrolyte are Li2Sx ≤ 4. In addition, strong exothermic reactions are discovered between cycled Li and dissolved higher-order polysulfide (Li2S6 and Li2S8) at 153.0 °C, driving the thermal runaway of cycled Li–S pouch cells. This work uncovers the potential safety risks of Li–S batteries and negative roles of the polysulfide shuttle for Li–S batteries from the safety view. [Display omitted] •The thermal safety of deeply cycled Li–S pouch cells have been systematically investigated.•Thermal behaviors of 16-cycle cells with/without electrolytes are due to different viscosities.•The thermal safety of 16/45-cycle cells depends on the polysulfides species in electrolytes.
Author Liu, He
Chen, Zi-Xian
Yuan, Hong
Zhang, Qiang
Yang, Shi-Jie
Huang, Jia-Qi
Liu, Lei
Cheng, Xin-Bing
Jiang, Feng-Ni
Author_xml – sequence: 1
  givenname: Feng-Ni
  surname: Jiang
  fullname: Jiang, Feng-Ni
  organization: College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
– sequence: 2
  givenname: Shi-Jie
  surname: Yang
  fullname: Yang, Shi-Jie
  organization: Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
– sequence: 3
  givenname: Zi-Xian
  surname: Chen
  fullname: Chen, Zi-Xian
  organization: Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
– sequence: 4
  givenname: He
  surname: Liu
  fullname: Liu, He
  organization: Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
– sequence: 5
  givenname: Hong
  surname: Yuan
  fullname: Yuan, Hong
  organization: Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
– sequence: 6
  givenname: Lei
  surname: Liu
  fullname: Liu, Lei
  organization: College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
– sequence: 7
  givenname: Jia-Qi
  surname: Huang
  fullname: Huang, Jia-Qi
  organization: Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
– sequence: 8
  givenname: Xin-Bing
  orcidid: 0000-0001-7567-1210
  surname: Cheng
  fullname: Cheng, Xin-Bing
  email: chengxb@seu.edu.cn
  organization: Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 211189, Jiangsu, China
– sequence: 9
  givenname: Qiang
  surname: Zhang
  fullname: Zhang, Qiang
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
BookMark eNqFkNFKwzAUhoNMcFPfwIu8QGuStlnjhTCGOmHgjeJlSJNTm5G1I0mVvb0p88oLvTo_HL7_cL4FmvVDDwjdUJJTQvntLj8oH63OGWEspzQnRJyhOWOUZCUTdIbmlC_LjBFCL9AihB0hnHFWzNH7xn504LPBG_D4MLhjGF1rDQRsezNqMDim_V457MdefakjbgeP0wm86rCzsbPjHk_MOOGj7rAG58IVOm-VC3D9My_R2-PD63qTbV-enterbaaLisVMNBXUelkrzRXltaE1E40SwDQhBtoCGDG8rqoGUhKlIVyD0LplwFklGlFcortTr_ZDCB5aqW1U0Q599Mo6SYmcFMmdPCmSkyJJqUyKElz-gg_e7pU__ofdnzBIj31a8DJoC31yZT3oKM1g_y74Bhf7hkg
CitedBy_id crossref_primary_10_1016_j_partic_2023_05_001
crossref_primary_10_1002_batt_202400544
crossref_primary_10_1021_acsami_3c03055
crossref_primary_10_1016_j_jechem_2023_10_016
crossref_primary_10_1002_adma_202307370
crossref_primary_10_1021_acsami_3c08088
crossref_primary_10_1016_j_partic_2023_04_002
crossref_primary_10_1039_D3NR01942J
crossref_primary_10_34133_energymatadv_0084
crossref_primary_10_1016_j_partic_2024_09_014
crossref_primary_10_1002_sus2_70004
crossref_primary_10_1007_s12598_024_02631_x
crossref_primary_10_1039_D3TA05632E
crossref_primary_10_1016_j_jechem_2023_09_030
crossref_primary_10_1016_j_partic_2023_08_020
crossref_primary_10_1016_j_jechem_2024_01_072
crossref_primary_10_1016_j_partic_2023_03_008
crossref_primary_10_1016_j_partic_2024_01_011
crossref_primary_10_1002_metm_6
crossref_primary_10_1016_j_nanoen_2024_110387
crossref_primary_10_1016_j_partic_2024_08_008
crossref_primary_10_1021_acs_iecr_3c02202
crossref_primary_10_1016_j_partic_2024_07_020
crossref_primary_10_1016_j_partic_2024_08_004
crossref_primary_10_1039_D3YA00035D
crossref_primary_10_1002_elt2_8
crossref_primary_10_3390_batteries9060296
crossref_primary_10_1016_j_partic_2023_11_006
crossref_primary_10_1016_j_joule_2024_07_002
crossref_primary_10_1016_j_partic_2023_04_005
crossref_primary_10_1016_j_partic_2024_04_007
crossref_primary_10_1002_adma_202312880
crossref_primary_10_1016_j_coelec_2024_101516
crossref_primary_10_1002_idm2_12087
crossref_primary_10_1007_s40820_024_01482_6
crossref_primary_10_1016_j_jechem_2024_11_014
crossref_primary_10_1002_adma_202414047
crossref_primary_10_1007_s11426_023_1866_y
crossref_primary_10_1016_j_partic_2023_12_017
crossref_primary_10_1007_s40820_023_01120_7
crossref_primary_10_1016_j_partic_2024_09_009
crossref_primary_10_1007_s12598_023_02417_7
Cites_doi 10.1002/aenm.202003690
10.1016/j.cclet.2021.05.065
10.1016/j.jechem.2020.03.029
10.1016/j.cclet.2018.08.013
10.1088/1361-6528/abe002
10.1002/slct.202003118
10.1039/D2EE01820A
10.1016/j.jechem.2021.12.024
10.1016/j.jpowsour.2021.229503
10.1002/aenm.201802768
10.1038/s41560-022-01001-0
10.1016/j.joule.2022.02.015
10.1149/1945-7111/abe7a2
10.1016/j.ensm.2019.06.036
10.1016/j.partic.2021.01.008
10.1016/j.ensm.2020.04.035
10.1016/j.ensm.2016.01.007
10.1016/j.partic.2020.12.003
10.1021/acsnano.9b06267
10.1002/sus2.74
10.1002/anie.201912701
10.1016/j.joule.2021.06.009
10.1016/j.mtener.2020.100519
10.1016/j.ensm.2020.11.026
10.1016/j.etran.2022.100211
10.1002/adma.202108400
10.1016/j.ensm.2019.04.001
10.1016/j.jechem.2022.01.019
10.1002/eom2.12010
10.1016/j.jechem.2022.05.005
10.1016/j.jechem.2020.06.054
10.1016/j.partic.2021.01.003
10.1016/j.ensm.2018.09.024
10.1016/j.jechem.2020.07.028
10.1016/j.mtener.2017.11.003
10.1002/batt.202000051
10.1016/j.cej.2022.135150
10.1016/j.apenergy.2019.04.009
10.1002/sus2.4
ContentType Journal Article
Copyright 2022 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences
Copyright_xml – notice: 2022 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.partic.2022.11.009
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2210-4291
EndPage 17
ExternalDocumentID 10_1016_j_partic_2022_11_009
S1674200122002553
GroupedDBID --K
--M
-02
-0B
-S~
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VR
5VS
6I.
7-5
71M
8P~
92M
9D9
9DB
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABJNI
ABMAC
ABNUV
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADEWK
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFUIB
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CAJUS
CCEZO
CDRFL
CHBEP
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EP2
EP3
FA0
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
J1W
JUIAU
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q--
Q38
R-B
RIG
ROL
RT2
SDF
SDG
SES
SPC
SPCBC
SSG
SSM
SSZ
T5K
T8R
TCJ
TGT
U1F
U1G
U5B
U5L
UNMZH
~G-
~LO
-SB
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CAJEB
CITATION
EFKBS
ID FETCH-LOGICAL-c352t-9b5e8c78ac6a168d1829ba9e2c00def3e20d6855bee2094d06ce9ccf2e6259b93
IEDL.DBID .~1
ISSN 1674-2001
IngestDate Wed Sep 03 02:35:54 EDT 2025
Thu Apr 24 23:12:16 EDT 2025
Fri Feb 23 02:38:49 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Keywords Polysulfides
Lithium–sulfur batteries
Pouch cell
Polysulfide shuttle
Thermal runaway
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-9b5e8c78ac6a168d1829ba9e2c00def3e20d6855bee2094d06ce9ccf2e6259b93
ORCID 0000-0001-7567-1210
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1674200122002553
PageCount 8
ParticipantIDs crossref_citationtrail_10_1016_j_partic_2022_11_009
crossref_primary_10_1016_j_partic_2022_11_009
elsevier_sciencedirect_doi_10_1016_j_partic_2022_11_009
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle Particuology
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kaiser, Han, Liang, Dou, Wang (bib17) 2019; 19
Hou, Yao, Bi, Xie, Li, Huang, Zhang (bib10) 2022; 68
Liu, Cheng, Chong, Yuan, Huang, Zhang (bib22) 2021; 57
Zhou, Chen, Cui (bib47) 2022; 7
Lu, Cheng, Mao, Zhang, Yuan, Amin, Yang, Cheng, Meng, Wei (bib29) 2020; 2
Liu, Sun, Cheng, Guo, Yu, Bao, Wang, Li, Zhang (bib27) 2022; 12
Lee, Ko, Kang, Chung, Kim, Halim, Lee, Joo (bib20) 2017; 6
Bilal, Eroglu (bib1) 2021; 168
Liu, Jia, Yuan, Wang, Gao, Yin, Xu (bib25) 2020; 24
Feng, Zheng, Ren, He, Wang, Cui, Liu, Jin, Zhang, Xu, Hsu, Gao, Chen, Li, Wang, Wang, Li, Ouyang (bib6) 2019; 246
Yuan, Peng, Li, Xie, Kong, Zhao, Chen, Huang, Zhang (bib44) 2019; 9
.
Cheng, Liu, Yuan, Peng, Tang, Huang, Zhang (bib3) 2021; 1
Huang, Xiao, Han, Xue, Wang, Meng (bib12) 2021; 489
Xu, Cheng, Jiang, Yang, Ren, Shi, Hsu, Yuan, Huang, Ouyang, Zhang (bib37) 2022; 2
Xu, Jiang, Yang, Xiao, Liu, Liu, Liu, Cheng (bib38) 2022; 69
Zhao, Cheng, Zhang, Peng, Huang, Ran, Huang, Wei, Zhang (bib46) 2016; 3
Zhou, Li, Jiang, Ding, He, Guo, Chu, Yu (bib48) 2021; 31
Huang, Xue, Xiao, Wang, Li, Zhang, Meng (bib13) 2020; 30
Liu, Cresce, Schroeder, Xu, Mu, Wu, Shi, Wu (bib23) 2019; 17
Yang, Chen, Hu, Deng, Zhang, Yang (bib40) 2018; 29
Chen, Li, Zhao, Zhao, Yuan, Sun, Huang, Zhang (bib4) 2020; 59
Han, Zhao, Xiao, Zhong, Sheng, Lv, Zhang, Zhou, Cheng (bib8) 2021; 33
Peng, Zhang, Chen, Zhang, Jiang, Chen, Zhang, Zeng, Sa, Wei, Lin, Guo (bib30) 2020; 18
Li, Zhang, Sheng, Chen, Gao, Piao, Zhong, Han, Zhu, Wang, Zhou, Cheng (bib28) 2022; 15
Chen, Zhong, Zhou, Zhao, Cheng (bib5) 2022; 34
Ji, Jia, Wang, Duan, Li, Liu, Zhang (bib16) 2021; 32
Wang, Ke, Shen, Zhu, Yuan (bib34) 2021; 7
Yan, Chen, Fan, Lin, Fan, Feng, Wang, Xu, You, Yang (bib39) 2020; 5
Li, Shapter, Cheng, Xu, Gao (bib21) 2021; 58
Liu, Elias, Meng, Aurbach, Zou, Xia, Pang (bib24) 2021; 5
Shen, Zhang, Ding, Huang, Xu, Chen, Yan, Su, Chen, Liu, Zhang (bib33) 2021; 1
Yang, Yao, Xu, Jiang, Chen, Liu, Yuan, Huang, Cheng (bib42) 2021; 9
Cai, Jin, Zhao, Ma, Zhang (bib2) 2022; 33
Wang, Song, Sun, Shao, Wei, Xia, Tian, Liu, Sun (bib35) 2019; 13
Zhang, Li, Li, Yang (bib45) 2018; 8
Lai, Jin, Yi, Han, Feng, Zheng, Ouyang (bib19) 2021; 35
Wang, Yuan, Zhu, Wang, Huang, Wang, Xu (bib36) 2021; 55
Jiang, F.-N., Yang, S.-J., Cheng, X.-B., Yuan, H., Liu, L., Huang, J.-Q. & Zhang, Q. (2023). An interface-contact regulation renders thermally safe lithium metal batteries. eTransportation, 15. Article 100211.
He, Rao, Cheng, Liu, He, Chen, Miao, Yuan, Li, Huang (bib9) 2021; 11
Yuan, Nan, Zhao, Zhu, Lu, Cheng, Liu, He, Huang, Zhang (bib43) 2020; 3
Jiang, Yang, Cheng, Shi, Ding, Chen, Yuan, Liu, Huang, Zhang (bib14) 2022; 72
Gu, Lu, Chen, Qi, Zhang (bib7) 2021; 57
Huang, Lu, Xu, Zhang, Jiang, Zhang, Wang, Han, Cui, Chen (bib11) 2022; 6
Kong, Yin, Xu, Bian, Yuan, Lu, Zhao (bib18) 2021; 55
Piao, Xiao, Luo, Ma, Gao, Li, Tan, Yu, Zhou, Cheng (bib31) 2022; 34
Ren, Wang, Yang, Xu, Lei, Zhang, Wen, Gu, Chao, Jin (bib32) 2022; 437
Yang, Yao, Jiang, Xie, Sun, Chen, Yuan, Cheng, Huang, Zhang (bib41) 2022
Liu, Ma, Wei, Bai, Liu, Xu, Shan, Wang (bib26) 2021; 52
Kong (10.1016/j.partic.2022.11.009_bib18) 2021; 55
Cheng (10.1016/j.partic.2022.11.009_bib3) 2021; 1
Liu (10.1016/j.partic.2022.11.009_bib26) 2021; 52
Bilal (10.1016/j.partic.2022.11.009_bib1) 2021; 168
Cai (10.1016/j.partic.2022.11.009_bib2) 2022; 33
Wang (10.1016/j.partic.2022.11.009_bib34) 2021; 7
Peng (10.1016/j.partic.2022.11.009_bib30) 2020; 18
Ji (10.1016/j.partic.2022.11.009_bib16) 2021; 32
Yang (10.1016/j.partic.2022.11.009_bib42) 2021; 9
Liu (10.1016/j.partic.2022.11.009_bib22) 2021; 57
Zhao (10.1016/j.partic.2022.11.009_bib46) 2016; 3
Jiang (10.1016/j.partic.2022.11.009_bib14) 2022; 72
Liu (10.1016/j.partic.2022.11.009_bib24) 2021; 5
Zhou (10.1016/j.partic.2022.11.009_bib47) 2022; 7
Liu (10.1016/j.partic.2022.11.009_bib25) 2020; 24
Han (10.1016/j.partic.2022.11.009_bib8) 2021; 33
Li (10.1016/j.partic.2022.11.009_bib28) 2022; 15
Liu (10.1016/j.partic.2022.11.009_bib23) 2019; 17
Yang (10.1016/j.partic.2022.11.009_bib40) 2018; 29
Liu (10.1016/j.partic.2022.11.009_bib27) 2022; 12
Wang (10.1016/j.partic.2022.11.009_bib36) 2021; 55
Ren (10.1016/j.partic.2022.11.009_bib32) 2022; 437
Feng (10.1016/j.partic.2022.11.009_bib6) 2019; 246
Kaiser (10.1016/j.partic.2022.11.009_bib17) 2019; 19
Wang (10.1016/j.partic.2022.11.009_bib35) 2019; 13
Chen (10.1016/j.partic.2022.11.009_bib4) 2020; 59
Huang (10.1016/j.partic.2022.11.009_bib13) 2020; 30
Chen (10.1016/j.partic.2022.11.009_bib5) 2022; 34
Yang (10.1016/j.partic.2022.11.009_bib41) 2022
10.1016/j.partic.2022.11.009_bib15
Gu (10.1016/j.partic.2022.11.009_bib7) 2021; 57
Yan (10.1016/j.partic.2022.11.009_bib39) 2020; 5
Huang (10.1016/j.partic.2022.11.009_bib12) 2021; 489
Li (10.1016/j.partic.2022.11.009_bib21) 2021; 58
Lu (10.1016/j.partic.2022.11.009_bib29) 2020; 2
Xu (10.1016/j.partic.2022.11.009_bib38) 2022; 69
Lai (10.1016/j.partic.2022.11.009_bib19) 2021; 35
Yuan (10.1016/j.partic.2022.11.009_bib43) 2020; 3
Lee (10.1016/j.partic.2022.11.009_bib20) 2017; 6
Zhang (10.1016/j.partic.2022.11.009_bib45) 2018; 8
Huang (10.1016/j.partic.2022.11.009_bib11) 2022; 6
Yuan (10.1016/j.partic.2022.11.009_bib44) 2019; 9
Hou (10.1016/j.partic.2022.11.009_bib10) 2022; 68
Piao (10.1016/j.partic.2022.11.009_bib31) 2022; 34
Xu (10.1016/j.partic.2022.11.009_bib37) 2022; 2
Zhou (10.1016/j.partic.2022.11.009_bib48) 2021; 31
Shen (10.1016/j.partic.2022.11.009_bib33) 2021; 1
He (10.1016/j.partic.2022.11.009_bib9) 2021; 11
References_xml – volume: 7
  start-page: 312
  year: 2022
  end-page: 319
  ident: bib47
  article-title: Formulating energy density for designing practical lithium–sulfur batteries
  publication-title: Nature Energy
– volume: 3
  start-page: 77
  year: 2016
  end-page: 84
  ident: bib46
  article-title: Li
  publication-title: Energy Storage Materials
– volume: 57
  start-page: 139
  year: 2021
  end-page: 145
  ident: bib7
  article-title: Three-dimensional architectures based on carbon nanotube bridged Ti
  publication-title: Particuology
– volume: 69
  start-page: 205
  year: 2022
  end-page: 210
  ident: bib38
  article-title: Dual-layer vermiculite nanosheet based hybrid film to suppress dendrite growth in lithium metal batteries
  publication-title: Journal of Energy Chemistry
– volume: 34
  year: 2022
  ident: bib5
  article-title: Graphene-supported atomically dispersed metals as bifunctional catalysts for next-generation batteries based on conversion reactions
  publication-title: Advanced Materials
– volume: 55
  start-page: 80
  year: 2021
  end-page: 91
  ident: bib18
  article-title: Electrolyte solvation chemistry for lithium–sulfur batteries with electrolyte-lean conditions
  publication-title: Journal of Energy Chemistry
– volume: 32
  year: 2021
  ident: bib16
  article-title: Strong adsorption, catalysis and lithiophilic modulation of carbon nitride for lithium/sulfur battery
  publication-title: Nanotechnology
– volume: 17
  start-page: 366
  year: 2019
  end-page: 373
  ident: bib23
  article-title: Insight on lithium metal anode interphasial chemistry: Reduction mechanism of cyclic ether solvent and SEI film formation
  publication-title: Energy Storage Materials
– volume: 34
  year: 2022
  ident: bib31
  article-title: Constructing a stable interface layer by tailoring solvation chemistry in carbonate electrolytes for high-performance lithium-metal batteries
  publication-title: Advanced Materials
– volume: 29
  start-page: 1777
  year: 2018
  end-page: 1780
  ident: bib40
  article-title: High performance lithium-sulfur batteries by facilely coating a conductive carbon nanotube or graphene layer
  publication-title: Chinese Chemical Letters
– volume: 35
  start-page: 470
  year: 2021
  end-page: 499
  ident: bib19
  article-title: Mechanism, modeling, detection, and prevention of the internal short circuit in lithium-ion batteries: Recent advances and perspectives
  publication-title: Energy Storage Materials
– volume: 59
  start-page: 10732
  year: 2020
  end-page: 10745
  ident: bib4
  article-title: Electrolyte regulation towards stable lithium-metal anodes in lithium-sulfur batteries with sulfurized polyacrylonitrile cathodes
  publication-title: Angewandte Chemie International Edition
– volume: 55
  start-page: 484
  year: 2021
  end-page: 498
  ident: bib36
  article-title: Overcharge-to-thermal-runaway behavior and safety assessment of commercial lithium-ion cells with different cathode materials: A comparison study
  publication-title: Journal of Energy Chemistry
– volume: 6
  start-page: 1
  year: 2022
  end-page: 17
  ident: bib11
  article-title: Thermal runaway routes of large-format lithium-sulfur pouch cell batteries
  publication-title: Joule
– volume: 30
  start-page: 87
  year: 2020
  end-page: 97
  ident: bib13
  article-title: Comprehensive evaluation of safety performance and failure mechanism analysis for lithium sulfur pouch cells
  publication-title: Energy Storage Materials
– volume: 33
  start-page: 457
  year: 2022
  end-page: 461
  ident: bib2
  article-title: Mitigating side reaction for high capacity retention in lithium-sulfur batteries
  publication-title: Chinese Chemical Letters
– volume: 15
  start-page: 4289
  year: 2022
  end-page: 4300
  ident: bib28
  article-title: A quasi-intercalation reaction for fast sulfur redox kinetics in solid-state lithium–sulfur batteries
  publication-title: Energy & Environmental Science
– volume: 31
  year: 2021
  ident: bib48
  article-title: Pulverizing Fe
  publication-title: Advanced Functional Materials
– volume: 52
  start-page: 20
  year: 2021
  end-page: 27
  ident: bib26
  article-title: Study about thermal runaway behavior of high specific energy density Li-ion batteries in a low state of charge
  publication-title: Journal of Energy Chemistry
– volume: 58
  start-page: 1
  year: 2021
  end-page: 15
  ident: bib21
  article-title: Recent progress in sulfur cathodes for application to lithium–sulfur batteries
  publication-title: Particuology
– volume: 13
  start-page: 13235
  year: 2019
  end-page: 13243
  ident: bib35
  article-title: Conductive and catalytic VTe
  publication-title: ACS Nano
– volume: 33
  year: 2021
  ident: bib8
  article-title: Engineering d-p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li-S batteries
  publication-title: Advanced Materials
– volume: 6
  start-page: 255
  year: 2017
  end-page: 263
  ident: bib20
  article-title: Facile and scalable fabrication of highly loaded sulfur cathodes and lithium–sulfur pouch cells via air-controlled electrospray
  publication-title: Materials Today Energy
– volume: 57
  start-page: 56
  year: 2021
  end-page: 71
  ident: bib22
  article-title: Advanced electrode processing of lithium ion batteries: A review of powder technology in battery fabrication
  publication-title: Particuology
– volume: 68
  start-page: 300
  year: 2022
  end-page: 305
  ident: bib10
  article-title: High-valence sulfur-containing species in solid electrolyte interphase stabilizes lithium metal anodes in lithium–sulfur batteries
  publication-title: Journal of Energy Chemistry
– volume: 7
  year: 2021
  ident: bib34
  article-title: A critical review on materials and fabrications of thermally stable separators for lithium-ion batteries
  publication-title: Advanced Materials Technologies
– volume: 11
  year: 2021
  ident: bib9
  article-title: Rationally design a sulfur cathode with solid-phase conversion mechanism for high cycle-stable Li–S batteries
  publication-title: Advanced Energy Materials
– volume: 489
  year: 2021
  ident: bib12
  article-title: Thermal runaway features of lithium sulfur pouch cells at various states of charge evaluated by extended volume-accelerating rate calorimetry
  publication-title: Journal of Power Sources
– year: 2022
  ident: bib41
  article-title: Thermally stable polymer-rich solid electrolyte interphase for safe lithium metal pouch cells
  publication-title: Angewandte Chemie International Edition
– reference: Jiang, F.-N., Yang, S.-J., Cheng, X.-B., Yuan, H., Liu, L., Huang, J.-Q. & Zhang, Q. (2023). An interface-contact regulation renders thermally safe lithium metal batteries. eTransportation, 15. Article 100211.
– volume: 168
  year: 2021
  ident: bib1
  article-title: Assessment of Li-S battery performance as a function of electrolyte-to-sulfur ratio
  publication-title: Journal of the Electrochemical Society
– volume: 12
  year: 2022
  ident: bib27
  article-title: Working principles of lithium metal anode in pouch cells
  publication-title: Advanced Energy Materials
– volume: 1
  year: 2021
  ident: bib33
  article-title: Advanced electrode materials in lithium batteries: Retrospect and prospect
  publication-title: Energy Material Advances
– volume: 9
  year: 2019
  ident: bib44
  article-title: Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries
  publication-title: Advanced Energy Materials
– volume: 1
  start-page: 38
  year: 2021
  end-page: 50
  ident: bib3
  article-title: A perspective on sustainable energy materials for lithium batteries
  publication-title: SusMat
– volume: 246
  start-page: 53
  year: 2019
  end-page: 64
  ident: bib6
  article-title: Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database
  publication-title: Applied Energy
– volume: 72
  start-page: 158
  year: 2022
  end-page: 165
  ident: bib14
  article-title: Thermal safety of dendritic lithium against non-aqueous electrolyte in pouch-type lithium metal batteries
  publication-title: Journal of Energy Chemistry
– volume: 5
  start-page: 12020
  year: 2020
  end-page: 12027
  ident: bib39
  article-title: Effects of activation process on catkin derived carbon materials and its electrochemical performance as matrix in cathode of Li-S battery
  publication-title: ChemistrySelect
– volume: 19
  start-page: 1
  year: 2019
  end-page: 15
  ident: bib17
  article-title: Lithium sulfide-based cathode for lithium-ion/sulfur battery: Recent progress and challenges
  publication-title: Energy Storage Materials
– volume: 24
  start-page: 85
  year: 2020
  end-page: 112
  ident: bib25
  article-title: Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: A review
  publication-title: Energy Storage Materials
– volume: 18
  year: 2020
  ident: bib30
  article-title: Reducing polarization of lithium-sulfur batteries via ZnS/reduced graphene oxide accelerated lithium polysulfide conversion
  publication-title: Materials Today Energy
– volume: 2
  year: 2020
  ident: bib29
  article-title: Nitrogen-doped nanoarray-modified 3D hierarchical graphene as a cofunction host for high-performance flexible Li-S battery
  publication-title: EcoMat
– volume: 437
  year: 2022
  ident: bib32
  article-title: Metal-porphyrin frameworks supported by carbon nanotubes: Efficient polysulfide electrocatalysts for lithium-sulfur batteries
  publication-title: Chemical Engineering Journal
– reference: .
– volume: 9
  year: 2021
  ident: bib42
  article-title: Formation mechanism of the solid electrolyte interphase in different ester electrolytes
  publication-title: Journal of Materials Chemistry
– volume: 8
  year: 2018
  ident: bib45
  article-title: Mesoporous hybrid electrolyte for simultaneously inhibiting lithium dendrites and polysulfide shuttle in Li-S batteries
  publication-title: Advanced Energy Materials
– volume: 5
  start-page: 2323
  year: 2021
  end-page: 2364
  ident: bib24
  article-title: Electrolyte solutions design for lithium-sulfur batteries
  publication-title: Joule
– volume: 3
  start-page: 596
  year: 2020
  end-page: 603
  ident: bib43
  article-title: Slurry-coated sulfur/sulfide cathode with Li metal anode for all-solid-state lithium-sulfur pouch cells
  publication-title: Batteries & Supercaps
– volume: 2
  start-page: 435
  year: 2022
  end-page: 444
  ident: bib37
  article-title: Dendrite-accelerated thermal runaway mechanisms oflithium metal pouch batteries
  publication-title: SusMat
– volume: 11
  year: 2021
  ident: 10.1016/j.partic.2022.11.009_bib9
  article-title: Rationally design a sulfur cathode with solid-phase conversion mechanism for high cycle-stable Li–S batteries
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202003690
– volume: 33
  start-page: 457
  year: 2022
  ident: 10.1016/j.partic.2022.11.009_bib2
  article-title: Mitigating side reaction for high capacity retention in lithium-sulfur batteries
  publication-title: Chinese Chemical Letters
  doi: 10.1016/j.cclet.2021.05.065
– volume: 52
  start-page: 20
  year: 2021
  ident: 10.1016/j.partic.2022.11.009_bib26
  article-title: Study about thermal runaway behavior of high specific energy density Li-ion batteries in a low state of charge
  publication-title: Journal of Energy Chemistry
  doi: 10.1016/j.jechem.2020.03.029
– volume: 29
  start-page: 1777
  year: 2018
  ident: 10.1016/j.partic.2022.11.009_bib40
  article-title: High performance lithium-sulfur batteries by facilely coating a conductive carbon nanotube or graphene layer
  publication-title: Chinese Chemical Letters
  doi: 10.1016/j.cclet.2018.08.013
– volume: 32
  year: 2021
  ident: 10.1016/j.partic.2022.11.009_bib16
  article-title: Strong adsorption, catalysis and lithiophilic modulation of carbon nitride for lithium/sulfur battery
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/abe002
– volume: 5
  start-page: 12020
  year: 2020
  ident: 10.1016/j.partic.2022.11.009_bib39
  article-title: Effects of activation process on catkin derived carbon materials and its electrochemical performance as matrix in cathode of Li-S battery
  publication-title: ChemistrySelect
  doi: 10.1002/slct.202003118
– volume: 15
  start-page: 4289
  year: 2022
  ident: 10.1016/j.partic.2022.11.009_bib28
  article-title: A quasi-intercalation reaction for fast sulfur redox kinetics in solid-state lithium–sulfur batteries
  publication-title: Energy & Environmental Science
  doi: 10.1039/D2EE01820A
– volume: 68
  start-page: 300
  year: 2022
  ident: 10.1016/j.partic.2022.11.009_bib10
  article-title: High-valence sulfur-containing species in solid electrolyte interphase stabilizes lithium metal anodes in lithium–sulfur batteries
  publication-title: Journal of Energy Chemistry
  doi: 10.1016/j.jechem.2021.12.024
– volume: 12
  year: 2022
  ident: 10.1016/j.partic.2022.11.009_bib27
  article-title: Working principles of lithium metal anode in pouch cells
  publication-title: Advanced Energy Materials
– volume: 489
  year: 2021
  ident: 10.1016/j.partic.2022.11.009_bib12
  article-title: Thermal runaway features of lithium sulfur pouch cells at various states of charge evaluated by extended volume-accelerating rate calorimetry
  publication-title: Journal of Power Sources
  doi: 10.1016/j.jpowsour.2021.229503
– volume: 9
  year: 2019
  ident: 10.1016/j.partic.2022.11.009_bib44
  article-title: Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201802768
– volume: 7
  start-page: 312
  year: 2022
  ident: 10.1016/j.partic.2022.11.009_bib47
  article-title: Formulating energy density for designing practical lithium–sulfur batteries
  publication-title: Nature Energy
  doi: 10.1038/s41560-022-01001-0
– volume: 6
  start-page: 1
  year: 2022
  ident: 10.1016/j.partic.2022.11.009_bib11
  article-title: Thermal runaway routes of large-format lithium-sulfur pouch cell batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2022.02.015
– volume: 168
  year: 2021
  ident: 10.1016/j.partic.2022.11.009_bib1
  article-title: Assessment of Li-S battery performance as a function of electrolyte-to-sulfur ratio
  publication-title: Journal of the Electrochemical Society
  doi: 10.1149/1945-7111/abe7a2
– volume: 24
  start-page: 85
  year: 2020
  ident: 10.1016/j.partic.2022.11.009_bib25
  article-title: Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: A review
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2019.06.036
– volume: 7
  year: 2021
  ident: 10.1016/j.partic.2022.11.009_bib34
  article-title: A critical review on materials and fabrications of thermally stable separators for lithium-ion batteries
  publication-title: Advanced Materials Technologies
– volume: 58
  start-page: 1
  year: 2021
  ident: 10.1016/j.partic.2022.11.009_bib21
  article-title: Recent progress in sulfur cathodes for application to lithium–sulfur batteries
  publication-title: Particuology
  doi: 10.1016/j.partic.2021.01.008
– volume: 30
  start-page: 87
  year: 2020
  ident: 10.1016/j.partic.2022.11.009_bib13
  article-title: Comprehensive evaluation of safety performance and failure mechanism analysis for lithium sulfur pouch cells
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2020.04.035
– volume: 3
  start-page: 77
  year: 2016
  ident: 10.1016/j.partic.2022.11.009_bib46
  article-title: Li2S5-based ternary-salt electrolyte for robust lithium metal anode
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2016.01.007
– volume: 57
  start-page: 56
  year: 2021
  ident: 10.1016/j.partic.2022.11.009_bib22
  article-title: Advanced electrode processing of lithium ion batteries: A review of powder technology in battery fabrication
  publication-title: Particuology
  doi: 10.1016/j.partic.2020.12.003
– volume: 1
  year: 2021
  ident: 10.1016/j.partic.2022.11.009_bib33
  article-title: Advanced electrode materials in lithium batteries: Retrospect and prospect
  publication-title: Energy Material Advances
– volume: 13
  start-page: 13235
  year: 2019
  ident: 10.1016/j.partic.2022.11.009_bib35
  article-title: Conductive and catalytic VTe2@MgO heterostructure as effective polysulfide promotor for lithium–sulfur batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b06267
– volume: 2
  start-page: 435
  year: 2022
  ident: 10.1016/j.partic.2022.11.009_bib37
  article-title: Dendrite-accelerated thermal runaway mechanisms oflithium metal pouch batteries
  publication-title: SusMat
  doi: 10.1002/sus2.74
– volume: 59
  start-page: 10732
  year: 2020
  ident: 10.1016/j.partic.2022.11.009_bib4
  article-title: Electrolyte regulation towards stable lithium-metal anodes in lithium-sulfur batteries with sulfurized polyacrylonitrile cathodes
  publication-title: Angewandte Chemie International Edition
  doi: 10.1002/anie.201912701
– volume: 5
  start-page: 2323
  year: 2021
  ident: 10.1016/j.partic.2022.11.009_bib24
  article-title: Electrolyte solutions design for lithium-sulfur batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2021.06.009
– volume: 18
  year: 2020
  ident: 10.1016/j.partic.2022.11.009_bib30
  article-title: Reducing polarization of lithium-sulfur batteries via ZnS/reduced graphene oxide accelerated lithium polysulfide conversion
  publication-title: Materials Today Energy
  doi: 10.1016/j.mtener.2020.100519
– volume: 35
  start-page: 470
  year: 2021
  ident: 10.1016/j.partic.2022.11.009_bib19
  article-title: Mechanism, modeling, detection, and prevention of the internal short circuit in lithium-ion batteries: Recent advances and perspectives
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2020.11.026
– ident: 10.1016/j.partic.2022.11.009_bib15
  doi: 10.1016/j.etran.2022.100211
– year: 2022
  ident: 10.1016/j.partic.2022.11.009_bib41
  article-title: Thermally stable polymer-rich solid electrolyte interphase for safe lithium metal pouch cells
  publication-title: Angewandte Chemie International Edition
– volume: 34
  year: 2022
  ident: 10.1016/j.partic.2022.11.009_bib31
  article-title: Constructing a stable interface layer by tailoring solvation chemistry in carbonate electrolytes for high-performance lithium-metal batteries
  publication-title: Advanced Materials
  doi: 10.1002/adma.202108400
– volume: 33
  year: 2021
  ident: 10.1016/j.partic.2022.11.009_bib8
  article-title: Engineering d-p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li-S batteries
  publication-title: Advanced Materials
– volume: 19
  start-page: 1
  year: 2019
  ident: 10.1016/j.partic.2022.11.009_bib17
  article-title: Lithium sulfide-based cathode for lithium-ion/sulfur battery: Recent progress and challenges
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2019.04.001
– volume: 69
  start-page: 205
  year: 2022
  ident: 10.1016/j.partic.2022.11.009_bib38
  article-title: Dual-layer vermiculite nanosheet based hybrid film to suppress dendrite growth in lithium metal batteries
  publication-title: Journal of Energy Chemistry
  doi: 10.1016/j.jechem.2022.01.019
– volume: 34
  year: 2022
  ident: 10.1016/j.partic.2022.11.009_bib5
  article-title: Graphene-supported atomically dispersed metals as bifunctional catalysts for next-generation batteries based on conversion reactions
  publication-title: Advanced Materials
– volume: 2
  year: 2020
  ident: 10.1016/j.partic.2022.11.009_bib29
  article-title: Nitrogen-doped nanoarray-modified 3D hierarchical graphene as a cofunction host for high-performance flexible Li-S battery
  publication-title: EcoMat
  doi: 10.1002/eom2.12010
– volume: 72
  start-page: 158
  year: 2022
  ident: 10.1016/j.partic.2022.11.009_bib14
  article-title: Thermal safety of dendritic lithium against non-aqueous electrolyte in pouch-type lithium metal batteries
  publication-title: Journal of Energy Chemistry
  doi: 10.1016/j.jechem.2022.05.005
– volume: 55
  start-page: 80
  year: 2021
  ident: 10.1016/j.partic.2022.11.009_bib18
  article-title: Electrolyte solvation chemistry for lithium–sulfur batteries with electrolyte-lean conditions
  publication-title: Journal of Energy Chemistry
  doi: 10.1016/j.jechem.2020.06.054
– volume: 31
  year: 2021
  ident: 10.1016/j.partic.2022.11.009_bib48
  article-title: Pulverizing Fe2O3 nanoparticles for developing Fe3C/N-codoped carbon nanoboxes with multiple polysulfide anchoring and converting activity in Li-S batteries
  publication-title: Advanced Functional Materials
– volume: 57
  start-page: 139
  year: 2021
  ident: 10.1016/j.partic.2022.11.009_bib7
  article-title: Three-dimensional architectures based on carbon nanotube bridged Ti2C MXene nanosheets for Li–S batteries
  publication-title: Particuology
  doi: 10.1016/j.partic.2021.01.003
– volume: 17
  start-page: 366
  year: 2019
  ident: 10.1016/j.partic.2022.11.009_bib23
  article-title: Insight on lithium metal anode interphasial chemistry: Reduction mechanism of cyclic ether solvent and SEI film formation
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2018.09.024
– volume: 55
  start-page: 484
  year: 2021
  ident: 10.1016/j.partic.2022.11.009_bib36
  article-title: Overcharge-to-thermal-runaway behavior and safety assessment of commercial lithium-ion cells with different cathode materials: A comparison study
  publication-title: Journal of Energy Chemistry
  doi: 10.1016/j.jechem.2020.07.028
– volume: 6
  start-page: 255
  year: 2017
  ident: 10.1016/j.partic.2022.11.009_bib20
  article-title: Facile and scalable fabrication of highly loaded sulfur cathodes and lithium–sulfur pouch cells via air-controlled electrospray
  publication-title: Materials Today Energy
  doi: 10.1016/j.mtener.2017.11.003
– volume: 9
  year: 2021
  ident: 10.1016/j.partic.2022.11.009_bib42
  article-title: Formation mechanism of the solid electrolyte interphase in different ester electrolytes
  publication-title: Journal of Materials Chemistry
– volume: 3
  start-page: 596
  year: 2020
  ident: 10.1016/j.partic.2022.11.009_bib43
  article-title: Slurry-coated sulfur/sulfide cathode with Li metal anode for all-solid-state lithium-sulfur pouch cells
  publication-title: Batteries & Supercaps
  doi: 10.1002/batt.202000051
– volume: 437
  year: 2022
  ident: 10.1016/j.partic.2022.11.009_bib32
  article-title: Metal-porphyrin frameworks supported by carbon nanotubes: Efficient polysulfide electrocatalysts for lithium-sulfur batteries
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2022.135150
– volume: 246
  start-page: 53
  year: 2019
  ident: 10.1016/j.partic.2022.11.009_bib6
  article-title: Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2019.04.009
– volume: 1
  start-page: 38
  year: 2021
  ident: 10.1016/j.partic.2022.11.009_bib3
  article-title: A perspective on sustainable energy materials for lithium batteries
  publication-title: SusMat
  doi: 10.1002/sus2.4
– volume: 8
  year: 2018
  ident: 10.1016/j.partic.2022.11.009_bib45
  article-title: Mesoporous hybrid electrolyte for simultaneously inhibiting lithium dendrites and polysulfide shuttle in Li-S batteries
  publication-title: Advanced Energy Materials
SSID ssj0062623
Score 2.5091126
Snippet Comprehensive analyses on thermal runaway mechanisms are critically vital to achieve the safe lithium–sulfur (Li–S) batteries. The reactions between dissolved...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 10
SubjectTerms Lithium–sulfur batteries
Polysulfide shuttle
Polysulfides
Pouch cell
Thermal runaway
Title Higher-order polysulfides induced thermal runaway for 1.0 Ah lithium sulfur pouch cells
URI https://dx.doi.org/10.1016/j.partic.2022.11.009
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9DX_RB_MT5MfLga7Y2a9P2cQzHVNyLDvdWkjRlla0r24rsxb_du36MCaLgWwm5EC7H5Xfp7-4IuVOOp6VjS4ZZjfh0I5jvSMF4FCkDiMP4Mb53PI_EcOw8TtxJg_TrXBikVVa-v_TphbeuRjqVNjtZknRekD_Pi19DBTDGip-O46GVtz-3NA_A60WLN5yMFmHX6XMFxysrFoQokfM21vJEWuJP19POlTM4JkcVVqS9cjsnpGHSU3K4U0HwjLyVPA1WVNCk2WK2WeWzOInMikKwDccWUUR4c1hmmafyQ24ooFQKm6C9KQUIPk3yOUWZHMVzPaX4lL86J-PB_Wt_yKpeCUwDhFqzQLnG154vtZC28CMIGwIlA8O1ZUUm7hpuRcJ3XWXgK3AiS2gTaB1zgwGQCroXZC9dpOaSUK4wVBVaaLy6fF9p43E4UxMHTmwL0STdWkWhrgqJYz-LWVgzxt7DUrEhKhZijBAU2yRsK5WVhTT-mO_V2g-_GUQIvv5Xyat_S16TA-wmX_L7bsjeepmbW8Aca9UqjKpF9nsPT8PRF9DU1tU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb8IwDLYYHLYdpj019sxh1442tKE9IjTExuMy0LhVTZoKJigIqCb-_ew-JiZNm7RbFcVR5ET2Z_eLDfAg7YYKbCsw6FUjpW6E4dqBMHgYSo2IQ7sR5Tv6A9EZ2S9jZ1yCVvEWhmiVue3PbHpqrfORWq7N2nI6rb0Sf56nv4ZSYFzfgwpVp3LKUGk-dzuDwiAjZE-7vNF8uhRW8YIupXkt0zUxUOT8kcp5EjPxJw-143Xax3CUw0XWzHZ0AiUdn8LhThHBM3jLqBpGWkSTLRez7TqZRdNQrxnG23hyISOQN8dlVkkcfARbhkCV4SZYc8IQhU-myZyRTELiiZowyuavz2HUfhq2OkbeLsFQiKI2hicd7aqGGygRWMINMXLwZOBprkwz1FFdczMUruNIjV-eHZpCaU-piGuKgaRXv4ByvIj1JTAuKVoVSijyXq4rlW5wPFYdeXZkCVGFeqEiX-W1xKmlxcwvSGPvfqZYnxSLYYaPiq2C8SW1zGpp_DG_UWjf_3YnfDT3v0pe_VvyHvY7w37P7z0PutdwQM3lM7rfDZQ3q0TfIgTZyLv8in0COQDZhg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Higher-order+polysulfides+induced+thermal+runaway+for+1.0+Ah+lithium+sulfur+pouch+cells&rft.jtitle=Particuology&rft.au=Jiang%2C+Feng-Ni&rft.au=Yang%2C+Shi-Jie&rft.au=Chen%2C+Zi-Xian&rft.au=Liu%2C+He&rft.date=2023-08-01&rft.pub=Elsevier+B.V&rft.issn=1674-2001&rft.eissn=2210-4291&rft.volume=79&rft.spage=10&rft.epage=17&rft_id=info:doi/10.1016%2Fj.partic.2022.11.009&rft.externalDocID=S1674200122002553
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-2001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-2001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-2001&client=summon