Biosurfactant matrix for the environmental clean-up of dichlorophenol from aqueous medium and soil

Chlorophenols are used in many industries for their importance in preservation and herbicide preparation even though they possess high-risk factors. The prolonged usage of these compounds makes it very complicated to remove them from water and soil by conventional treatment methods. Biosurfactant ar...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science and pollution research international Vol. 28; no. 45; pp. 64278 - 64294
Main Authors Christopher, Judia Magthalin, Mohan, Monica, Sridharan, Rajalakshmi, Somasundaram, Swarnalatha, Ganesan, Sekaran
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Chlorophenols are used in many industries for their importance in preservation and herbicide preparation even though they possess high-risk factors. The prolonged usage of these compounds makes it very complicated to remove them from water and soil by conventional treatment methods. Biosurfactant are the promising structures with the ability to remove contaminants effectively. In this work, an attempt has been made to eliminate 2,4-dichlorophenol from soil and water using amino acid–enhanced cationic biosurfactant obtained from Bacillus axarquiensis . The produced BS has the ability to reduce the surface tension to 30.0 mN m -1 . From RSM, the optimum conditions for the maximum production of BS were obtained at time 95 h; pH 7; temperature 35 °C, and concentration of substrate 5%. The BS was immobilized using a solid support matrix for the stability. The environmental factors such as temperature and pH have no effect on the matrix used and found to be viable even under extreme conditions. The removal efficiency was achieved in the range of 93–96% from water and 80–85% from soil. Additionally, the recyclability and reusability of the matrix were also analyzed, and it withstands up to 8 cycles. As a result, the significance of biosurfactant by enhancing the amino acid content was explored in remediation technology.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-021-15265-8