Shift-Scale Complex Correlation for Wide-Angle Coherent Cross-Track SAR Stereo Processing

Automated synthetic aperture radar (SAR) stereo correspondence becomes increasingly difficult when imaging high-relief terrain utilizing large stereo crossing-angle geometries because high-relief SAR image features can undergo significant spatial distortions, causing a failure of traditional correla...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 45; no. 3; pp. 576 - 583
Main Authors Yocky, D.A., Jakowatz, C.V.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.03.2007
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Automated synthetic aperture radar (SAR) stereo correspondence becomes increasingly difficult when imaging high-relief terrain utilizing large stereo crossing-angle geometries because high-relief SAR image features can undergo significant spatial distortions, causing a failure of traditional correlation matching. This paper presents eight coherent spotlight-mode cross-track stereo pairs with stereo crossing angles averaging 93.7deg collected over a terrain with slopes greater than 20deg. These stereo pairs suffer from terrain-induced distortions, resulting in a decrease in complex correlation (coherence) when utilizing scanning-window correlation calculations. The search to maximize complex correlation is changed from a shift-only (disparity) search to a shift-and-scale search using the downhill simplex method. This approach is tested against complex imagery with simulated distortions and then employed on the eight wide-angle stereo collects. The resulting digital terrain maps (DTMs) are compared to ground truth. Using a shift-and-scale correlation approach to estimate disparity, the relative height errors decrease, and the number of reliable DTM posts increase
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2006.886193