Modeling global and local label correlation with graph convolutional networks for multi-label chest X-ray image classification
The diagnosis of chest diseases is a challenging task for assessing thousands of radiology subjects. Their diagnosis decisions heavily rely on the expert radiologists’ manual annotations. It is important to develop automated analysis methods for the computer-aided diagnosis of chest diseases on ches...
Saved in:
Published in | Medical & biological engineering & computing Vol. 60; no. 9; pp. 2567 - 2588 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The diagnosis of chest diseases is a challenging task for assessing thousands of radiology subjects. Their diagnosis decisions heavily rely on the expert radiologists’ manual annotations. It is important to develop automated analysis methods for the computer-aided diagnosis of chest diseases on chest radiography. To explore the label relationship and improve the diagnosis performance, we present an end-to-end multi-label learning framework for jointly modeling the global and local label correlation, called GL-MLL that (1) explores the label correlation from a globally static view and a locally adaptive view, (2) considers the imbalanced class distribution, and (3) focuses on capturing label-specific features in image-level representation. We validate the performance of the proposed framework on the CheXpert dataset. The results demonstrate that the proposed GL-MLL outperforms state-of-the-art approaches. The code is available at https://github.com/llt1836/GL-MLL.
Graphical abstract |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0140-0118 1741-0444 1741-0444 |
DOI: | 10.1007/s11517-022-02604-1 |