Modeling global and local label correlation with graph convolutional networks for multi-label chest X-ray image classification

The diagnosis of chest diseases is a challenging task for assessing thousands of radiology subjects. Their diagnosis decisions heavily rely on the expert radiologists’ manual annotations. It is important to develop automated analysis methods for the computer-aided diagnosis of chest diseases on ches...

Full description

Saved in:
Bibliographic Details
Published inMedical & biological engineering & computing Vol. 60; no. 9; pp. 2567 - 2588
Main Authors Li, Lanting, Cao, Peng, Yang, Jinzhu, Zaiane, Osmar R.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The diagnosis of chest diseases is a challenging task for assessing thousands of radiology subjects. Their diagnosis decisions heavily rely on the expert radiologists’ manual annotations. It is important to develop automated analysis methods for the computer-aided diagnosis of chest diseases on chest radiography. To explore the label relationship and improve the diagnosis performance, we present an end-to-end multi-label learning framework for jointly modeling the global and local label correlation, called GL-MLL that (1) explores the label correlation from a globally static view and a locally adaptive view, (2) considers the imbalanced class distribution, and (3) focuses on capturing label-specific features in image-level representation. We validate the performance of the proposed framework on the CheXpert dataset. The results demonstrate that the proposed GL-MLL outperforms state-of-the-art approaches. The code is available at https://github.com/llt1836/GL-MLL. Graphical abstract
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0140-0118
1741-0444
1741-0444
DOI:10.1007/s11517-022-02604-1