Integrated 1D epitaxial mirror twin boundaries for ultrascaled 2D MoS2 field-effect transistors

In atomically thin van der Waals materials, grain boundaries—the line defects between adjacent crystal grains with tilted in-plane rotations—are omnipresent. When the tilting angles are arbitrary, the grain boundaries form inhomogeneous sublattices, giving rise to local electronic states that are no...

Full description

Saved in:
Bibliographic Details
Published inNature nanotechnology Vol. 19; no. 7; pp. 955 - 961
Main Authors Ahn, Heonsu, Moon, Gunho, Jung, Hang-gyo, Deng, Bingchen, Yang, Dong-Hwan, Yang, Sera, Han, Cheolhee, Cho, Hyunje, Yeo, Youngki, Kim, Cheol-Joo, Yang, Chan-Ho, Kim, Jonghwan, Choi, Si-Young, Park, Hongkun, Jeon, Jongwook, Park, Jin-Hong, Jo, Moon-Ho
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.07.2024
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In atomically thin van der Waals materials, grain boundaries—the line defects between adjacent crystal grains with tilted in-plane rotations—are omnipresent. When the tilting angles are arbitrary, the grain boundaries form inhomogeneous sublattices, giving rise to local electronic states that are not controlled. Here we report on epitaxial realizations of deterministic MoS 2 mirror twin boundaries (MTBs) at which two adjoining crystals are reflection mirroring by an exactly 60° rotation by position-controlled epitaxy. We showed that these epitaxial MTBs are one-dimensionally metallic to a circuit length scale. By utilizing the ultimate one-dimensional (1D) feature (width ~0.4 nm and length up to a few tens of micrometres), we incorporated the epitaxial MTBs as a 1D gate to build integrated two-dimensional field-effect transistors (FETs). The critical role of the 1D MTB gate was verified to scale the depletion channel length down to 3.9 nm, resulting in a substantially lowered channel off-current at lower gate voltages. With that, in both individual and array FETs, we demonstrated state-of-the-art performances for low-power logics. The 1D epitaxial MTB gates in this work suggest a novel synthetic pathway for the integration of two-dimensional FETs—that are immune to high gate capacitance—towards ultimate scaling. Mirror twin boundaries in monolayer MoS 2 —line defects with reflection-mirroring symmetry—are one-dimensionally metallic. In this work, the authors fabricate these mirror twin boundary networks by epitaxity and incorporate them into ultrascaled 2D transistor circuits as gate electrodes.
AbstractList In atomically thin van der Waals materials, grain boundaries—the line defects between adjacent crystal grains with tilted in-plane rotations—are omnipresent. When the tilting angles are arbitrary, the grain boundaries form inhomogeneous sublattices, giving rise to local electronic states that are not controlled. Here we report on epitaxial realizations of deterministic MoS2 mirror twin boundaries (MTBs) at which two adjoining crystals are reflection mirroring by an exactly 60° rotation by position-controlled epitaxy. We showed that these epitaxial MTBs are one-dimensionally metallic to a circuit length scale. By utilizing the ultimate one-dimensional (1D) feature (width ~0.4 nm and length up to a few tens of micrometres), we incorporated the epitaxial MTBs as a 1D gate to build integrated two-dimensional field-effect transistors (FETs). The critical role of the 1D MTB gate was verified to scale the depletion channel length down to 3.9 nm, resulting in a substantially lowered channel off-current at lower gate voltages. With that, in both individual and array FETs, we demonstrated state-of-the-art performances for low-power logics. The 1D epitaxial MTB gates in this work suggest a novel synthetic pathway for the integration of two-dimensional FETs—that are immune to high gate capacitance—towards ultimate scaling.Mirror twin boundaries in monolayer MoS2—line defects with reflection-mirroring symmetry—are one-dimensionally metallic. In this work, the authors fabricate these mirror twin boundary networks by epitaxity and incorporate them into ultrascaled 2D transistor circuits as gate electrodes.
In atomically thin van der Waals materials, grain boundaries—the line defects between adjacent crystal grains with tilted in-plane rotations—are omnipresent. When the tilting angles are arbitrary, the grain boundaries form inhomogeneous sublattices, giving rise to local electronic states that are not controlled. Here we report on epitaxial realizations of deterministic MoS 2 mirror twin boundaries (MTBs) at which two adjoining crystals are reflection mirroring by an exactly 60° rotation by position-controlled epitaxy. We showed that these epitaxial MTBs are one-dimensionally metallic to a circuit length scale. By utilizing the ultimate one-dimensional (1D) feature (width ~0.4 nm and length up to a few tens of micrometres), we incorporated the epitaxial MTBs as a 1D gate to build integrated two-dimensional field-effect transistors (FETs). The critical role of the 1D MTB gate was verified to scale the depletion channel length down to 3.9 nm, resulting in a substantially lowered channel off-current at lower gate voltages. With that, in both individual and array FETs, we demonstrated state-of-the-art performances for low-power logics. The 1D epitaxial MTB gates in this work suggest a novel synthetic pathway for the integration of two-dimensional FETs—that are immune to high gate capacitance—towards ultimate scaling. Mirror twin boundaries in monolayer MoS 2 —line defects with reflection-mirroring symmetry—are one-dimensionally metallic. In this work, the authors fabricate these mirror twin boundary networks by epitaxity and incorporate them into ultrascaled 2D transistor circuits as gate electrodes.
In atomically thin van der Waals materials, grain boundaries-the line defects between adjacent crystal grains with tilted in-plane rotations-are omnipresent. When the tilting angles are arbitrary, the grain boundaries form inhomogeneous sublattices, giving rise to local electronic states that are not controlled. Here we report on epitaxial realizations of deterministic MoS2 mirror twin boundaries (MTBs) at which two adjoining crystals are reflection mirroring by an exactly 60° rotation by position-controlled epitaxy. We showed that these epitaxial MTBs are one-dimensionally metallic to a circuit length scale. By utilizing the ultimate one-dimensional (1D) feature (width ~0.4 nm and length up to a few tens of micrometres), we incorporated the epitaxial MTBs as a 1D gate to build integrated two-dimensional field-effect transistors (FETs). The critical role of the 1D MTB gate was verified to scale the depletion channel length down to 3.9 nm, resulting in a substantially lowered channel off-current at lower gate voltages. With that, in both individual and array FETs, we demonstrated state-of-the-art performances for low-power logics. The 1D epitaxial MTB gates in this work suggest a novel synthetic pathway for the integration of two-dimensional FETs-that are immune to high gate capacitance-towards ultimate scaling.In atomically thin van der Waals materials, grain boundaries-the line defects between adjacent crystal grains with tilted in-plane rotations-are omnipresent. When the tilting angles are arbitrary, the grain boundaries form inhomogeneous sublattices, giving rise to local electronic states that are not controlled. Here we report on epitaxial realizations of deterministic MoS2 mirror twin boundaries (MTBs) at which two adjoining crystals are reflection mirroring by an exactly 60° rotation by position-controlled epitaxy. We showed that these epitaxial MTBs are one-dimensionally metallic to a circuit length scale. By utilizing the ultimate one-dimensional (1D) feature (width ~0.4 nm and length up to a few tens of micrometres), we incorporated the epitaxial MTBs as a 1D gate to build integrated two-dimensional field-effect transistors (FETs). The critical role of the 1D MTB gate was verified to scale the depletion channel length down to 3.9 nm, resulting in a substantially lowered channel off-current at lower gate voltages. With that, in both individual and array FETs, we demonstrated state-of-the-art performances for low-power logics. The 1D epitaxial MTB gates in this work suggest a novel synthetic pathway for the integration of two-dimensional FETs-that are immune to high gate capacitance-towards ultimate scaling.
Author Yang, Dong-Hwan
Choi, Si-Young
Moon, Gunho
Yeo, Youngki
Jeon, Jongwook
Yang, Sera
Han, Cheolhee
Jo, Moon-Ho
Deng, Bingchen
Ahn, Heonsu
Kim, Jonghwan
Kim, Cheol-Joo
Jung, Hang-gyo
Cho, Hyunje
Yang, Chan-Ho
Park, Jin-Hong
Park, Hongkun
Author_xml – sequence: 1
  givenname: Heonsu
  surname: Ahn
  fullname: Ahn, Heonsu
  organization: Center for Van der Waals Quantum Solids, Institute for Basic Science, Department of Materials Science and Engineering, Pohang University of Science and Technology
– sequence: 2
  givenname: Gunho
  surname: Moon
  fullname: Moon, Gunho
  organization: Center for Van der Waals Quantum Solids, Institute for Basic Science, Department of Materials Science and Engineering, Pohang University of Science and Technology
– sequence: 3
  givenname: Hang-gyo
  surname: Jung
  fullname: Jung, Hang-gyo
  organization: Department of Semiconductor Convergence Engineering, Sungkyunkwan University
– sequence: 4
  givenname: Bingchen
  orcidid: 0000-0002-4567-731X
  surname: Deng
  fullname: Deng, Bingchen
  organization: Department of Chemistry and Chemical Biology, Harvard University, Department of Physics, Harvard University
– sequence: 5
  givenname: Dong-Hwan
  surname: Yang
  fullname: Yang, Dong-Hwan
  organization: Center for Van der Waals Quantum Solids, Institute for Basic Science, Department of Materials Science and Engineering, Pohang University of Science and Technology
– sequence: 6
  givenname: Sera
  surname: Yang
  fullname: Yang, Sera
  organization: Center for Van der Waals Quantum Solids, Institute for Basic Science, Department of Materials Science and Engineering, Pohang University of Science and Technology
– sequence: 7
  givenname: Cheolhee
  orcidid: 0000-0002-8936-9407
  surname: Han
  fullname: Han, Cheolhee
  organization: Center for Van der Waals Quantum Solids, Institute for Basic Science, Department of Materials Science and Engineering, Pohang University of Science and Technology
– sequence: 8
  givenname: Hyunje
  surname: Cho
  fullname: Cho, Hyunje
  organization: Center for Van der Waals Quantum Solids, Institute for Basic Science, Department of Materials Science and Engineering, Pohang University of Science and Technology
– sequence: 9
  givenname: Youngki
  surname: Yeo
  fullname: Yeo, Youngki
  organization: Department of Physics, Korea Advanced Institute of Science and Technology
– sequence: 10
  givenname: Cheol-Joo
  orcidid: 0000-0002-4312-3866
  surname: Kim
  fullname: Kim, Cheol-Joo
  organization: Center for Van der Waals Quantum Solids, Institute for Basic Science, Department of Chemical Engineering, Pohang University of Science and Technology
– sequence: 11
  givenname: Chan-Ho
  orcidid: 0000-0002-3384-4272
  surname: Yang
  fullname: Yang, Chan-Ho
  organization: Department of Physics, Korea Advanced Institute of Science and Technology
– sequence: 12
  givenname: Jonghwan
  orcidid: 0000-0002-7646-3269
  surname: Kim
  fullname: Kim, Jonghwan
  organization: Center for Van der Waals Quantum Solids, Institute for Basic Science, Department of Materials Science and Engineering, Pohang University of Science and Technology
– sequence: 13
  givenname: Si-Young
  orcidid: 0000-0003-1648-142X
  surname: Choi
  fullname: Choi, Si-Young
  organization: Center for Van der Waals Quantum Solids, Institute for Basic Science, Department of Materials Science and Engineering, Pohang University of Science and Technology
– sequence: 14
  givenname: Hongkun
  orcidid: 0000-0001-9576-8829
  surname: Park
  fullname: Park, Hongkun
  organization: Department of Chemistry and Chemical Biology, Harvard University, Department of Physics, Harvard University
– sequence: 15
  givenname: Jongwook
  orcidid: 0000-0003-1159-584X
  surname: Jeon
  fullname: Jeon, Jongwook
  organization: Department of Electrical and Computer Engineering, Sungkyunkwan University
– sequence: 16
  givenname: Jin-Hong
  orcidid: 0000-0001-8401-6920
  surname: Park
  fullname: Park, Jin-Hong
  organization: Department of Semiconductor Convergence Engineering, Sungkyunkwan University, Department of Electrical and Computer Engineering, Sungkyunkwan University
– sequence: 17
  givenname: Moon-Ho
  orcidid: 0000-0002-3160-358X
  surname: Jo
  fullname: Jo, Moon-Ho
  email: mhjo@postech.ac.kr
  organization: Center for Van der Waals Quantum Solids, Institute for Basic Science, Department of Materials Science and Engineering, Pohang University of Science and Technology, Department of Physics, Pohang University of Science and Technology
BookMark eNp9kE1PHSEUQEljk6rtH-iKpJtupnL5GJilUduaaLpouyY85mIw8-AJTKr_vrTPaOLCFQTOIZdzRA5STkjIR2BfgAlzUiWoUQ2My4GBZuMAb8ghaGkGISZ18LQ3-h05qvWWMcUnLg-JvUwNb4prOFM4p7iLzd1Ht9BtLCUX2v7ERDd5TbMrESsN_WxdWnHVu6U7_Jxe55-chojLPGAI6Bvt16nG2nKp78nb4JaKHx7XY_L768Wvs-_D1Y9vl2enV4MXirdhAgwz85PYBG2MHoGDFoATepDM4AyoldnwcWRaKO8420jPOxW04w64EMfk8_7dXcl3K9Zmt7F6XBaXMK_VCqaVZmAk6-inF-htXkvq03XKKC1HOY2dMnvKl1xrwWB9T9NiTv13cbHA7L_ydl_e9vL2f3kLXeUv1F2JW1ceXpfEXqodTjdYnqd6xfoLAH6W1A
CitedBy_id crossref_primary_10_1039_D4CE00836G
crossref_primary_10_1088_1674_4926_24070013
crossref_primary_10_1007_s40820_025_01702_7
crossref_primary_10_1016_j_apsusc_2024_162024
crossref_primary_10_1021_acsnano_4c13483
crossref_primary_10_1103_PhysRevLett_134_046301
crossref_primary_10_1038_s41565_024_01708_z
crossref_primary_10_1021_acs_chemmater_4c02987
Cites_doi 10.1021/acsnano.0c02072
10.1038/ncomms14231
10.1126/sciadv.aaw3180
10.1038/ncomms8372
10.1021/acs.nanolett.3c00935
10.1038/s41565-021-01004-0
10.1021/acs.nanolett.5b02834
10.1038/nnano.2017.161
10.1149/05807.0281ecst
10.1021/acsnano.7b02172
10.1126/science.aah4698
10.1038/nmat3633
10.1038/nphys3730
10.1038/s41699-018-0050-x
10.1038/s41565-021-00963-8
10.1103/PhysRevB.92.035435
10.1021/cm5025662
10.1021/nl4007479
10.1088/0953-8984/25/31/312201
10.1021/acs.nanolett.0c05135
10.1021/acs.nanolett.8b04869
10.1126/science.1250564
10.1021/acsaelm.3c00096
10.1103/PhysRevLett.98.075503
10.1038/s41563-022-01398-9
10.1002/aelm.201600468
10.1038/s41563-022-01277-3
10.1038/s41586-021-03472-9
10.1038/ncomms10426
10.1021/acs.chemmater.0c00949
10.1021/nl3040042
10.1103/PhysRevB.102.161106
10.1002/adma.201500846
10.1021/nl503373x
10.1088/1361-648X/aae9cf
10.1038/s41565-021-00942-z
10.1021/acsnano.5b00410
10.1063/1.2717855
10.1021/acsnano.0c05397
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2024. The Author(s), under exclusive licence to Springer Nature Limited.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2024. The Author(s), under exclusive licence to Springer Nature Limited.
DBID AAYXX
CITATION
3V.
7QO
7U5
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
L6V
L7M
LK8
M0S
M1P
M7P
M7S
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
DOI 10.1038/s41565-024-01706-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1748-3395
EndPage 961
ExternalDocumentID 10_1038_s41565_024_01706_1
GrantInformation_xml – fundername: Institute for Basic Science (IBS), Korea, under Project Code IBS-R034-D1
– fundername: NSF CUA (PHY-1125846), Samsung Electronics, NSF (PHY-1506284)
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
5M7
5S5
6OB
70F
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
L6V
LK8
M1P
M7P
M7S
MM.
NNMJJ
O9-
ODYON
P2P
P62
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
NFIDA
7QO
7U5
7XB
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
K9.
L7M
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c352t-91efd0c93bf78876121731e9ec1408ed1e758b2660735ca20b4c2612f7a2a1233
IEDL.DBID 7X7
ISSN 1748-3387
1748-3395
IngestDate Fri Jul 11 14:38:23 EDT 2025
Sat Aug 23 12:21:34 EDT 2025
Tue Jul 01 01:56:36 EDT 2025
Thu Apr 24 22:53:04 EDT 2025
Fri Feb 21 02:40:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-91efd0c93bf78876121731e9ec1408ed1e758b2660735ca20b4c2612f7a2a1233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4567-731X
0000-0003-1159-584X
0000-0002-8936-9407
0000-0001-9576-8829
0000-0002-3384-4272
0000-0002-7646-3269
0000-0002-3160-358X
0000-0001-8401-6920
0000-0002-4312-3866
0000-0003-1648-142X
PQID 3085746496
PQPubID 546299
PageCount 7
ParticipantIDs proquest_miscellaneous_3075701840
proquest_journals_3085746496
crossref_citationtrail_10_1038_s41565_024_01706_1
crossref_primary_10_1038_s41565_024_01706_1
springer_journals_10_1038_s41565_024_01706_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature nanotechnology
PublicationTitleAbbrev Nat. Nanotechnol
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Gibertini, Marzari (CR14) 2015; 15
Zou, Liu, Yakobson (CR12) 2012; 13
Lehtinen (CR16) 2015; 9
Wang (CR26) 2014; 26
Liu, Cao, Kang, Banerjee (CR40) 2013; 58
Sung (CR3) 2017; 12
Park (CR38) 2023; 5
Li (CR28) 2021; 16
Ly (CR10) 2016; 7
CR37
Desai (CR36) 2016; 354
Ma (CR19) 2017; 8
Barja (CR21) 2016; 12
Choi (CR11) 2023; 23
Ma (CR22) 2017; 11
Xia (CR18) 2020; 14
Seo (CR31) 2021; 21
Heo (CR1) 2015; 27
Shen (CR35) 2021; 593
Jin (CR25) 2021; 16
Le, Rahman (CR13) 2013; 25
Szabó, Rhyner, Luisier (CR41) 2015; 92
Zhou (CR9) 2013; 13
Lee (CR5) 2020; 32
Heo (CR2) 2015; 6
van der Zande (CR8) 2013; 12
CR24
Jolie (CR15) 2019; 9
Yin (CR33) 2014; 344
Ji (CR27) 2015; 15
Ding, Jiao, Wu, Yakobson (CR29) 2007; 98
Lee (CR34) 2019; 19
Batzill (CR7) 2018; 30
Krishnamurthi, Brocks (CR17) 2020; 102
Zhu (CR20) 2022; 21
Laturia, Van de Put, Vandenberghe (CR42) 2018; 2
Komsa, Krasheninnikov (CR6) 2017; 3
Pop, Mann, Goodson, Dai (CR32) 2007; 101
Dodda (CR39) 2022; 21
Jin (CR4) 2019; 5
Wang (CR30) 2022; 17
Wang (CR23) 2020; 14
1706_CR24
J Park (1706_CR38) 2023; 5
G Jin (1706_CR4) 2019; 5
A Laturia (1706_CR42) 2018; 2
M Gibertini (1706_CR14) 2015; 15
S-Y Seo (1706_CR31) 2021; 21
C-S Lee (1706_CR5) 2020; 32
SB Desai (1706_CR36) 2016; 354
T Li (1706_CR28) 2021; 16
W Jolie (1706_CR15) 2019; 9
J Wang (1706_CR30) 2022; 17
X Zou (1706_CR12) 2012; 13
E Pop (1706_CR32) 2007; 101
X Yin (1706_CR33) 2014; 344
Y Xia (1706_CR18) 2020; 14
S Barja (1706_CR21) 2016; 12
W Liu (1706_CR40) 2013; 58
W Zhou (1706_CR9) 2013; 13
H-P Komsa (1706_CR6) 2017; 3
D Le (1706_CR13) 2013; 25
Á Szabó (1706_CR41) 2015; 92
G Jin (1706_CR25) 2021; 16
O Lehtinen (1706_CR16) 2015; 9
F Ding (1706_CR29) 2007; 98
H Heo (1706_CR1) 2015; 27
AM van der Zande (1706_CR8) 2013; 12
1706_CR37
JH Sung (1706_CR3) 2017; 12
C-S Lee (1706_CR34) 2019; 19
A Dodda (1706_CR39) 2022; 21
H Heo (1706_CR2) 2015; 6
S Krishnamurthi (1706_CR17) 2020; 102
Y Ma (1706_CR19) 2017; 8
M Batzill (1706_CR7) 2018; 30
TH Ly (1706_CR10) 2016; 7
Y Ma (1706_CR22) 2017; 11
P-C Shen (1706_CR35) 2021; 593
L Wang (1706_CR23) 2020; 14
M-Y Choi (1706_CR11) 2023; 23
S Wang (1706_CR26) 2014; 26
Q Ji (1706_CR27) 2015; 15
T Zhu (1706_CR20) 2022; 21
References_xml – volume: 14
  start-page: 8299
  year: 2020
  end-page: 8306
  ident: CR23
  article-title: Direct observation of one-dimensional Peierls-type charge density wave in twin boundaries of monolayer MoTe
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c02072
– volume: 8
  year: 2017
  ident: CR19
  article-title: Angle resolved photoemission spectroscopy reveals spin charge separation in metallic MoSe grain boundary
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14231
– volume: 5
  start-page: eaaw3180
  year: 2019
  ident: CR4
  article-title: Atomically thin three-dimensional membranes of van der Waals semiconductors by wafer-scale growth
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw3180
– ident: CR37
– volume: 6
  year: 2015
  ident: CR2
  article-title: Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8372
– volume: 23
  start-page: 4516
  year: 2023
  end-page: 4523
  ident: CR11
  article-title: Thermodynamically driven tilt grain boundaries of monolayer crystals using catalytic liquid alloys
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.3c00935
– volume: 17
  start-page: 33
  year: 2022
  end-page: 38
  ident: CR30
  article-title: Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS monolayer on vicinal a-plane sapphire
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-021-01004-0
– volume: 15
  start-page: 6229
  year: 2015
  end-page: 6238
  ident: CR14
  article-title: Emergence of one-dimensional wires of free carriers in transition-metal-dichalcogenide nanostructures
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02834
– volume: 12
  start-page: 1064
  year: 2017
  end-page: 1070
  ident: CR3
  article-title: Coplanar semiconductor–metal circuitry defined on few-layer MoTe via polymorphic heteroepitaxy
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.161
– volume: 58
  start-page: 281
  year: 2013
  end-page: 285
  ident: CR40
  article-title: High-performance field-effect-transistors on monolayer-WSe
  publication-title: ECS Trans.
  doi: 10.1149/05807.0281ecst
– volume: 11
  start-page: 5130
  year: 2017
  end-page: 5139
  ident: CR22
  article-title: Metallic twin grain boundaries embedded in MoSe monolayers grown by molecular beam epitaxy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b02172
– volume: 354
  start-page: 99
  year: 2016
  end-page: 102
  ident: CR36
  article-title: MoS transistors with 1-nanometer gate lengths
  publication-title: Science
  doi: 10.1126/science.aah4698
– volume: 12
  start-page: 554
  year: 2013
  end-page: 561
  ident: CR8
  article-title: Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3633
– volume: 12
  start-page: 751
  year: 2016
  end-page: 756
  ident: CR21
  article-title: Charge density wave order in 1D mirror twin boundaries of single-layer MoSe
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3730
– volume: 2
  year: 2018
  ident: CR42
  article-title: Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk
  publication-title: npj 2D Mater. Appl.
  doi: 10.1038/s41699-018-0050-x
– volume: 16
  start-page: 1201
  year: 2021
  end-page: 1207
  ident: CR28
  article-title: Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-021-00963-8
– volume: 92
  start-page: 035435
  year: 2015
  ident: CR41
  article-title: Ab initio simulation of single- and few-layer MoS transistors: effect of electron–phonon scattering
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.035435
– volume: 26
  start-page: 6371
  year: 2014
  end-page: 6379
  ident: CR26
  article-title: Shape evolution of monolayer MoS crystals grown by chemical vapor deposition
  publication-title: Chem. Mater.
  doi: 10.1021/cm5025662
– volume: 13
  start-page: 2615
  year: 2013
  end-page: 2622
  ident: CR9
  article-title: Intrinsic structural defects in monolayer molybdenum disulfide
  publication-title: Nano Lett.
  doi: 10.1021/nl4007479
– volume: 25
  start-page: 312201
  year: 2013
  ident: CR13
  article-title: Joined edges in MoS : metallic and half-metallic wires
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/25/31/312201
– volume: 21
  start-page: 3341
  year: 2021
  end-page: 3354
  ident: CR31
  article-title: Identification of point defects in atomically thin transition-metal dichalcogenide semiconductors as active dopants
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c05135
– volume: 19
  start-page: 1814
  year: 2019
  end-page: 1820
  ident: CR34
  article-title: Epitaxial van der Waals contacts between transition-metal dichalcogenide monolayer polymorphs
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b04869
– volume: 344
  start-page: 488
  year: 2014
  end-page: 490
  ident: CR33
  article-title: Edge nonlinear optics on a MoS atomic monolayer
  publication-title: Science
  doi: 10.1126/science.1250564
– volume: 5
  start-page: 2239
  year: 2023
  end-page: 2248
  ident: CR38
  article-title: Investigation of optimal architecture of MoS channel field-effect transistors on a sub-2 nm process node
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.3c00096
– volume: 98
  start-page: 075503
  year: 2007
  ident: CR29
  article-title: Pseudoclimb and dislocation dynamics in superplastic nanotubes
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.075503
– volume: 21
  start-page: 1379
  year: 2022
  end-page: 1387
  ident: CR39
  article-title: Active pixel sensor matrix based on monolayer MoS phototransistor array
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-022-01398-9
– volume: 9
  start-page: 011055
  year: 2019
  ident: CR15
  article-title: Tomonaga–Luttinger liquid in a box: electrons confined within MoS mirror-twin boundaries
  publication-title: Phys. Rev. X
– volume: 3
  start-page: 1600468
  year: 2017
  ident: CR6
  article-title: Engineering the electronic properties of two-dimensional transition metal dichalcogenides by introducing mirror twin boundaries
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201600468
– volume: 21
  start-page: 748
  year: 2022
  end-page: 753
  ident: CR20
  article-title: Imaging gate-tunable Tomonaga–Luttinger liquids in 1H-MoSe mirror twin boundaries
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-022-01277-3
– volume: 593
  start-page: 211
  year: 2021
  end-page: 217
  ident: CR35
  article-title: Ultralow contact resistance between semimetal and monolayer semiconductors
  publication-title: Nature
  doi: 10.1038/s41586-021-03472-9
– volume: 7
  year: 2016
  ident: CR10
  article-title: Misorientation-angle-dependent electrical transport across molybdenum disulfide grain boundaries
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10426
– volume: 32
  start-page: 5084
  year: 2020
  end-page: 5090
  ident: CR5
  article-title: Programmed band gap modulation within van der Waals semiconductor monolayers by metalorganic vapor-phase epitaxy
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c00949
– volume: 13
  start-page: 253
  year: 2012
  end-page: 258
  ident: CR12
  article-title: Predicting dislocations and grain boundaries in two-dimensional metal-disulfides from the first principles
  publication-title: Nano Lett.
  doi: 10.1021/nl3040042
– volume: 102
  start-page: 161106
  year: 2020
  ident: CR17
  article-title: Spin/charge density waves at the boundaries of transition metal dichalcogenides
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.102.161106
– volume: 27
  start-page: 3803
  year: 2015
  end-page: 3810
  ident: CR1
  article-title: Rotation-misfit-free heteroepitaxial stacking and stitching growth of hexagonal transition-metal dichalcogenide monolayers by nucleation kinetics controls
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500846
– volume: 15
  start-page: 198
  year: 2015
  end-page: 205
  ident: CR27
  article-title: Unravelling orientation distribution and merging behavior of monolayer MoS domains on sapphire
  publication-title: Nano Lett.
  doi: 10.1021/nl503373x
– volume: 30
  start-page: 493001
  year: 2018
  ident: CR7
  article-title: Mirror twin grain boundaries in molybdenum dichalcogenides
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/1361-648X/aae9cf
– ident: CR24
– volume: 16
  start-page: 1092
  year: 2021
  end-page: 1098
  ident: CR25
  article-title: Heteroepitaxial van der Waals semiconductor superlattices
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-021-00942-z
– volume: 9
  start-page: 3274
  year: 2015
  end-page: 3283
  ident: CR16
  article-title: Atomic scale microstructure and properties of Se-deficient two-dimensional MoSe
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00410
– volume: 101
  start-page: 093710
  year: 2007
  ident: CR32
  article-title: Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2717855
– volume: 14
  start-page: 10716
  year: 2020
  end-page: 10722
  ident: CR18
  article-title: Charge density modulation and the Luttinger liquid state in MoSe mirror twin boundaries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c05397
– volume: 27
  start-page: 3803
  year: 2015
  ident: 1706_CR1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500846
– volume: 32
  start-page: 5084
  year: 2020
  ident: 1706_CR5
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c00949
– volume: 11
  start-page: 5130
  year: 2017
  ident: 1706_CR22
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b02172
– volume: 5
  start-page: eaaw3180
  year: 2019
  ident: 1706_CR4
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw3180
– volume: 23
  start-page: 4516
  year: 2023
  ident: 1706_CR11
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.3c00935
– volume: 15
  start-page: 198
  year: 2015
  ident: 1706_CR27
  publication-title: Nano Lett.
  doi: 10.1021/nl503373x
– volume: 14
  start-page: 8299
  year: 2020
  ident: 1706_CR23
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c02072
– volume: 25
  start-page: 312201
  year: 2013
  ident: 1706_CR13
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/25/31/312201
– volume: 17
  start-page: 33
  year: 2022
  ident: 1706_CR30
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-021-01004-0
– volume: 21
  start-page: 1379
  year: 2022
  ident: 1706_CR39
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-022-01398-9
– volume: 102
  start-page: 161106
  year: 2020
  ident: 1706_CR17
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.102.161106
– volume: 30
  start-page: 493001
  year: 2018
  ident: 1706_CR7
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/1361-648X/aae9cf
– volume: 16
  start-page: 1201
  year: 2021
  ident: 1706_CR28
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-021-00963-8
– volume: 9
  start-page: 011055
  year: 2019
  ident: 1706_CR15
  publication-title: Phys. Rev. X
– volume: 12
  start-page: 554
  year: 2013
  ident: 1706_CR8
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3633
– volume: 92
  start-page: 035435
  year: 2015
  ident: 1706_CR41
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.035435
– volume: 12
  start-page: 751
  year: 2016
  ident: 1706_CR21
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3730
– volume: 8
  year: 2017
  ident: 1706_CR19
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14231
– volume: 7
  year: 2016
  ident: 1706_CR10
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10426
– volume: 3
  start-page: 1600468
  year: 2017
  ident: 1706_CR6
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201600468
– volume: 26
  start-page: 6371
  year: 2014
  ident: 1706_CR26
  publication-title: Chem. Mater.
  doi: 10.1021/cm5025662
– ident: 1706_CR24
– volume: 354
  start-page: 99
  year: 2016
  ident: 1706_CR36
  publication-title: Science
  doi: 10.1126/science.aah4698
– volume: 344
  start-page: 488
  year: 2014
  ident: 1706_CR33
  publication-title: Science
  doi: 10.1126/science.1250564
– volume: 21
  start-page: 748
  year: 2022
  ident: 1706_CR20
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-022-01277-3
– volume: 15
  start-page: 6229
  year: 2015
  ident: 1706_CR14
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02834
– ident: 1706_CR37
– volume: 5
  start-page: 2239
  year: 2023
  ident: 1706_CR38
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.3c00096
– volume: 13
  start-page: 2615
  year: 2013
  ident: 1706_CR9
  publication-title: Nano Lett.
  doi: 10.1021/nl4007479
– volume: 593
  start-page: 211
  year: 2021
  ident: 1706_CR35
  publication-title: Nature
  doi: 10.1038/s41586-021-03472-9
– volume: 6
  year: 2015
  ident: 1706_CR2
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8372
– volume: 13
  start-page: 253
  year: 2012
  ident: 1706_CR12
  publication-title: Nano Lett.
  doi: 10.1021/nl3040042
– volume: 9
  start-page: 3274
  year: 2015
  ident: 1706_CR16
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00410
– volume: 14
  start-page: 10716
  year: 2020
  ident: 1706_CR18
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c05397
– volume: 101
  start-page: 093710
  year: 2007
  ident: 1706_CR32
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2717855
– volume: 12
  start-page: 1064
  year: 2017
  ident: 1706_CR3
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.161
– volume: 2
  year: 2018
  ident: 1706_CR42
  publication-title: npj 2D Mater. Appl.
  doi: 10.1038/s41699-018-0050-x
– volume: 16
  start-page: 1092
  year: 2021
  ident: 1706_CR25
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-021-00942-z
– volume: 98
  start-page: 075503
  year: 2007
  ident: 1706_CR29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.075503
– volume: 21
  start-page: 3341
  year: 2021
  ident: 1706_CR31
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c05135
– volume: 58
  start-page: 281
  year: 2013
  ident: 1706_CR40
  publication-title: ECS Trans.
  doi: 10.1149/05807.0281ecst
– volume: 19
  start-page: 1814
  year: 2019
  ident: 1706_CR34
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b04869
SSID ssj0052924
Score 2.529364
Snippet In atomically thin van der Waals materials, grain boundaries—the line defects between adjacent crystal grains with tilted in-plane rotations—are omnipresent....
In atomically thin van der Waals materials, grain boundaries-the line defects between adjacent crystal grains with tilted in-plane rotations-are omnipresent....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 955
SubjectTerms 140/125
142/126
639/301/357/1018
639/301/357/551
639/925/357/995
639/925/927/1007
Angle of reflection
Boundaries
Capacitance
Chemistry and Materials Science
Crystal defects
Crystals
Dislocations
Electron states
Epitaxy
Field effect transistors
Gates (circuits)
Grain boundaries
Materials Science
Molybdenum disulfide
Nanotechnology
Nanotechnology and Microengineering
Semiconductor devices
Transistor circuits
Transistors
Twin boundaries
Title Integrated 1D epitaxial mirror twin boundaries for ultrascaled 2D MoS2 field-effect transistors
URI https://link.springer.com/article/10.1038/s41565-024-01706-1
https://www.proquest.com/docview/3085746496
https://www.proquest.com/docview/3075701840
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RS-QwEB48fbl7ODw9cT1PItybV2yTtmmfxFP39EART2HfQpJmQdBW2y76851J2109OF9KoUkDmUlmvszkG4AfReR4keYmkC5HgMKtCExkdJCKSIsitaE1dA55fpGe3sR_JsmkP3Br-rTKYU_0G3VRWToj3xdExR6ncZ4ePDwGVDWKoqt9CY0PsELUZaTVcjIHXAnPu6K2Ms4ChGKyvzQTimy_IeBCd5MpB0NSLZq3hmnhbf4TIPV2Z7wKn3uHkR12Ev4CS65cg0-vaATXQZ0NnA8Fi46Zo0Igz6hX7P62rquatU-3JTO-fhIBY4Z-KpvdtbVuUEDYhx-z8-ovZz6bLegyPFhLRsxziDRf4WZ8cn10GvSFEwKL_lSLG5ibFqHNhZlSsiCRhEkRudxZhFOZQ_kgSjBomnF9J1bz0MSWqMSmUnONpkxswHJZlW4TGNlz7WzquDZxPkW8jG-ySIzW1kgRjyAaZk3ZnlWcilvcKR_dFpnqZlrhTCs_0yoawd68z0PHqfFu6-1BGKpfX41aaMMIduefcWVQuEOXrppRG5nIkBDsCH4OQlz84v8jbr0_4jf4yL3eUM7uNiy39cx9R8-kNTte_fCZjX_vwMqvk4vLqxcAA-At
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9RAFH9BPKgHgyhxFXBI9KQN7Uzb2R4IIazrrrBchITbMDOdTUiwxbYb9J_yb-S9acuqidy4NWlnpnnzm_cx7wvgfR45nqeZCaTL0EDhVgQmMjpIRaRFntrQGrqHnJ2kk7P463lyvgK_-1wYCqvseaJn1Hlp6Y58V1Ap9jiNs3T_-kdAXaPIu9q30GhhceR-3aDJVu9NR7i_Hzgffz49nARdV4HAorLR4Ol28zy0mTBziqSjClpSRC5zFm2NocOfRxXaoNxC8CdW89DElupszaXmGvm8wHkfweNYoCSnzPTxl57zJzxrm-jKeBig6Se7JJ1QDHdrMpQoF5piPiT1vvlbEC61238csl7OjdfgeaegsoMWUS9gxRXr8OyPsoUvQU37GhM5i0bMUeORn4hj9v2yqsqKNTeXBTO-XxMZ4gz1Yra4aipdIyBwDB-xWfmNMx89F7QRJawhoelrltSv4OxBSLoBq0VZuNfASH_QzqaOaxNnc7TP8UnmidHaGiniAUQ91ZTtqphTM40r5b3pYqhaSiuktPKUVtEAPt6NuW5reNz79Wa_Gao7z7Vaom8AO3ev8SSSe0UXrlzQNzKRIVnMA_jUb-Jyiv-v-Ob-Fd_Bk8np7FgdT0-O3sJT7jFE8cKbsNpUC7eFWlFjtj0UGVw8NPZvAfVJGMg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRaraA-pTXaCtK7WnNtrETuLNoapalhVbygq1ReJmbMeRkCCBJCvoX-uv60weLEWCG7dIiW1l_Nkzn2c8A_A-DRxP48R40iVIULgVngmM9mIRaJHG1reGziH35vHOQfj9MDpcgb_9XRgKq-z3xGajTgtLZ-QjQanYwzhM4lHWhUXsT6Zfzs49qiBFnta-nEYLkV335wLpW_V5NsG5_sD5dPv31o7XVRjwLBoeNa50l6W-TYTJKKqOsmlJEbjEWeQdY4c_gua0QR2GCyGymvsmtJRzK5Oaa9zzBfb7AFYlsaIBrH7bnu__7PVAxJO2pK4Mxx4SQdld2fHFeFQRbaKb0RQBIqkSzv9qcWnr3nDPNlpv-gTWOnOVfW3x9RRWXP4MHl9LYvgc1KzPOJGyYMIclSG5RFSz0-OyLEpWXxznzDTVm4iWM7SS2eKkLnWF8MA2fML2il-cNbF0XhtfwmpSoU0Gk-oFHNyLUF_CIC9y9woYWRPa2dhxbcIkQ7aOTzKNjNbWSBEOIeilpmyX05xKa5yoxrcuxqqVtEJJq0bSKhjCx6s2Z21Gjzu_3uwnQ3Wru1JLLA7h3dVrXJfkbNG5Kxb0jYykT_x5CJ_6SVx2cfuI63eP-BYeIu7Vj9l8dwMe8QZCFDy8CYO6XLjXaCLV5k2HRQZH9w3_fwD8Hlo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+1D+epitaxial+mirror+twin+boundaries+for+ultrascaled+2D+MoS2+field-effect+transistors&rft.jtitle=Nature+nanotechnology&rft.au=Ahn%2C+Heonsu&rft.au=Moon%2C+Gunho&rft.au=Jung%2C+Hang-gyo&rft.au=Deng%2C+Bingchen&rft.date=2024-07-01&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=19&rft.issue=7&rft.spage=955&rft.epage=961&rft_id=info:doi/10.1038%2Fs41565-024-01706-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41565_024_01706_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon