Integrated 1D epitaxial mirror twin boundaries for ultrascaled 2D MoS2 field-effect transistors
In atomically thin van der Waals materials, grain boundaries—the line defects between adjacent crystal grains with tilted in-plane rotations—are omnipresent. When the tilting angles are arbitrary, the grain boundaries form inhomogeneous sublattices, giving rise to local electronic states that are no...
Saved in:
Published in | Nature nanotechnology Vol. 19; no. 7; pp. 955 - 961 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.07.2024
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In atomically thin van der Waals materials, grain boundaries—the line defects between adjacent crystal grains with tilted in-plane rotations—are omnipresent. When the tilting angles are arbitrary, the grain boundaries form inhomogeneous sublattices, giving rise to local electronic states that are not controlled. Here we report on epitaxial realizations of deterministic MoS
2
mirror twin boundaries (MTBs) at which two adjoining crystals are reflection mirroring by an exactly 60° rotation by position-controlled epitaxy. We showed that these epitaxial MTBs are one-dimensionally metallic to a circuit length scale. By utilizing the ultimate one-dimensional (1D) feature (width ~0.4 nm and length up to a few tens of micrometres), we incorporated the epitaxial MTBs as a 1D gate to build integrated two-dimensional field-effect transistors (FETs). The critical role of the 1D MTB gate was verified to scale the depletion channel length down to 3.9 nm, resulting in a substantially lowered channel off-current at lower gate voltages. With that, in both individual and array FETs, we demonstrated state-of-the-art performances for low-power logics. The 1D epitaxial MTB gates in this work suggest a novel synthetic pathway for the integration of two-dimensional FETs—that are immune to high gate capacitance—towards ultimate scaling.
Mirror twin boundaries in monolayer MoS
2
—line defects with reflection-mirroring symmetry—are one-dimensionally metallic. In this work, the authors fabricate these mirror twin boundary networks by epitaxity and incorporate them into ultrascaled 2D transistor circuits as gate electrodes. |
---|---|
AbstractList | In atomically thin van der Waals materials, grain boundaries—the line defects between adjacent crystal grains with tilted in-plane rotations—are omnipresent. When the tilting angles are arbitrary, the grain boundaries form inhomogeneous sublattices, giving rise to local electronic states that are not controlled. Here we report on epitaxial realizations of deterministic MoS2 mirror twin boundaries (MTBs) at which two adjoining crystals are reflection mirroring by an exactly 60° rotation by position-controlled epitaxy. We showed that these epitaxial MTBs are one-dimensionally metallic to a circuit length scale. By utilizing the ultimate one-dimensional (1D) feature (width ~0.4 nm and length up to a few tens of micrometres), we incorporated the epitaxial MTBs as a 1D gate to build integrated two-dimensional field-effect transistors (FETs). The critical role of the 1D MTB gate was verified to scale the depletion channel length down to 3.9 nm, resulting in a substantially lowered channel off-current at lower gate voltages. With that, in both individual and array FETs, we demonstrated state-of-the-art performances for low-power logics. The 1D epitaxial MTB gates in this work suggest a novel synthetic pathway for the integration of two-dimensional FETs—that are immune to high gate capacitance—towards ultimate scaling.Mirror twin boundaries in monolayer MoS2—line defects with reflection-mirroring symmetry—are one-dimensionally metallic. In this work, the authors fabricate these mirror twin boundary networks by epitaxity and incorporate them into ultrascaled 2D transistor circuits as gate electrodes. In atomically thin van der Waals materials, grain boundaries—the line defects between adjacent crystal grains with tilted in-plane rotations—are omnipresent. When the tilting angles are arbitrary, the grain boundaries form inhomogeneous sublattices, giving rise to local electronic states that are not controlled. Here we report on epitaxial realizations of deterministic MoS 2 mirror twin boundaries (MTBs) at which two adjoining crystals are reflection mirroring by an exactly 60° rotation by position-controlled epitaxy. We showed that these epitaxial MTBs are one-dimensionally metallic to a circuit length scale. By utilizing the ultimate one-dimensional (1D) feature (width ~0.4 nm and length up to a few tens of micrometres), we incorporated the epitaxial MTBs as a 1D gate to build integrated two-dimensional field-effect transistors (FETs). The critical role of the 1D MTB gate was verified to scale the depletion channel length down to 3.9 nm, resulting in a substantially lowered channel off-current at lower gate voltages. With that, in both individual and array FETs, we demonstrated state-of-the-art performances for low-power logics. The 1D epitaxial MTB gates in this work suggest a novel synthetic pathway for the integration of two-dimensional FETs—that are immune to high gate capacitance—towards ultimate scaling. Mirror twin boundaries in monolayer MoS 2 —line defects with reflection-mirroring symmetry—are one-dimensionally metallic. In this work, the authors fabricate these mirror twin boundary networks by epitaxity and incorporate them into ultrascaled 2D transistor circuits as gate electrodes. In atomically thin van der Waals materials, grain boundaries-the line defects between adjacent crystal grains with tilted in-plane rotations-are omnipresent. When the tilting angles are arbitrary, the grain boundaries form inhomogeneous sublattices, giving rise to local electronic states that are not controlled. Here we report on epitaxial realizations of deterministic MoS2 mirror twin boundaries (MTBs) at which two adjoining crystals are reflection mirroring by an exactly 60° rotation by position-controlled epitaxy. We showed that these epitaxial MTBs are one-dimensionally metallic to a circuit length scale. By utilizing the ultimate one-dimensional (1D) feature (width ~0.4 nm and length up to a few tens of micrometres), we incorporated the epitaxial MTBs as a 1D gate to build integrated two-dimensional field-effect transistors (FETs). The critical role of the 1D MTB gate was verified to scale the depletion channel length down to 3.9 nm, resulting in a substantially lowered channel off-current at lower gate voltages. With that, in both individual and array FETs, we demonstrated state-of-the-art performances for low-power logics. The 1D epitaxial MTB gates in this work suggest a novel synthetic pathway for the integration of two-dimensional FETs-that are immune to high gate capacitance-towards ultimate scaling.In atomically thin van der Waals materials, grain boundaries-the line defects between adjacent crystal grains with tilted in-plane rotations-are omnipresent. When the tilting angles are arbitrary, the grain boundaries form inhomogeneous sublattices, giving rise to local electronic states that are not controlled. Here we report on epitaxial realizations of deterministic MoS2 mirror twin boundaries (MTBs) at which two adjoining crystals are reflection mirroring by an exactly 60° rotation by position-controlled epitaxy. We showed that these epitaxial MTBs are one-dimensionally metallic to a circuit length scale. By utilizing the ultimate one-dimensional (1D) feature (width ~0.4 nm and length up to a few tens of micrometres), we incorporated the epitaxial MTBs as a 1D gate to build integrated two-dimensional field-effect transistors (FETs). The critical role of the 1D MTB gate was verified to scale the depletion channel length down to 3.9 nm, resulting in a substantially lowered channel off-current at lower gate voltages. With that, in both individual and array FETs, we demonstrated state-of-the-art performances for low-power logics. The 1D epitaxial MTB gates in this work suggest a novel synthetic pathway for the integration of two-dimensional FETs-that are immune to high gate capacitance-towards ultimate scaling. |
Author | Yang, Dong-Hwan Choi, Si-Young Moon, Gunho Yeo, Youngki Jeon, Jongwook Yang, Sera Han, Cheolhee Jo, Moon-Ho Deng, Bingchen Ahn, Heonsu Kim, Jonghwan Kim, Cheol-Joo Jung, Hang-gyo Cho, Hyunje Yang, Chan-Ho Park, Jin-Hong Park, Hongkun |
Author_xml | – sequence: 1 givenname: Heonsu surname: Ahn fullname: Ahn, Heonsu organization: Center for Van der Waals Quantum Solids, Institute for Basic Science, Department of Materials Science and Engineering, Pohang University of Science and Technology – sequence: 2 givenname: Gunho surname: Moon fullname: Moon, Gunho organization: Center for Van der Waals Quantum Solids, Institute for Basic Science, Department of Materials Science and Engineering, Pohang University of Science and Technology – sequence: 3 givenname: Hang-gyo surname: Jung fullname: Jung, Hang-gyo organization: Department of Semiconductor Convergence Engineering, Sungkyunkwan University – sequence: 4 givenname: Bingchen orcidid: 0000-0002-4567-731X surname: Deng fullname: Deng, Bingchen organization: Department of Chemistry and Chemical Biology, Harvard University, Department of Physics, Harvard University – sequence: 5 givenname: Dong-Hwan surname: Yang fullname: Yang, Dong-Hwan organization: Center for Van der Waals Quantum Solids, Institute for Basic Science, Department of Materials Science and Engineering, Pohang University of Science and Technology – sequence: 6 givenname: Sera surname: Yang fullname: Yang, Sera organization: Center for Van der Waals Quantum Solids, Institute for Basic Science, Department of Materials Science and Engineering, Pohang University of Science and Technology – sequence: 7 givenname: Cheolhee orcidid: 0000-0002-8936-9407 surname: Han fullname: Han, Cheolhee organization: Center for Van der Waals Quantum Solids, Institute for Basic Science, Department of Materials Science and Engineering, Pohang University of Science and Technology – sequence: 8 givenname: Hyunje surname: Cho fullname: Cho, Hyunje organization: Center for Van der Waals Quantum Solids, Institute for Basic Science, Department of Materials Science and Engineering, Pohang University of Science and Technology – sequence: 9 givenname: Youngki surname: Yeo fullname: Yeo, Youngki organization: Department of Physics, Korea Advanced Institute of Science and Technology – sequence: 10 givenname: Cheol-Joo orcidid: 0000-0002-4312-3866 surname: Kim fullname: Kim, Cheol-Joo organization: Center for Van der Waals Quantum Solids, Institute for Basic Science, Department of Chemical Engineering, Pohang University of Science and Technology – sequence: 11 givenname: Chan-Ho orcidid: 0000-0002-3384-4272 surname: Yang fullname: Yang, Chan-Ho organization: Department of Physics, Korea Advanced Institute of Science and Technology – sequence: 12 givenname: Jonghwan orcidid: 0000-0002-7646-3269 surname: Kim fullname: Kim, Jonghwan organization: Center for Van der Waals Quantum Solids, Institute for Basic Science, Department of Materials Science and Engineering, Pohang University of Science and Technology – sequence: 13 givenname: Si-Young orcidid: 0000-0003-1648-142X surname: Choi fullname: Choi, Si-Young organization: Center for Van der Waals Quantum Solids, Institute for Basic Science, Department of Materials Science and Engineering, Pohang University of Science and Technology – sequence: 14 givenname: Hongkun orcidid: 0000-0001-9576-8829 surname: Park fullname: Park, Hongkun organization: Department of Chemistry and Chemical Biology, Harvard University, Department of Physics, Harvard University – sequence: 15 givenname: Jongwook orcidid: 0000-0003-1159-584X surname: Jeon fullname: Jeon, Jongwook organization: Department of Electrical and Computer Engineering, Sungkyunkwan University – sequence: 16 givenname: Jin-Hong orcidid: 0000-0001-8401-6920 surname: Park fullname: Park, Jin-Hong organization: Department of Semiconductor Convergence Engineering, Sungkyunkwan University, Department of Electrical and Computer Engineering, Sungkyunkwan University – sequence: 17 givenname: Moon-Ho orcidid: 0000-0002-3160-358X surname: Jo fullname: Jo, Moon-Ho email: mhjo@postech.ac.kr organization: Center for Van der Waals Quantum Solids, Institute for Basic Science, Department of Materials Science and Engineering, Pohang University of Science and Technology, Department of Physics, Pohang University of Science and Technology |
BookMark | eNp9kE1PHSEUQEljk6rtH-iKpJtupnL5GJilUduaaLpouyY85mIw8-AJTKr_vrTPaOLCFQTOIZdzRA5STkjIR2BfgAlzUiWoUQ2My4GBZuMAb8ghaGkGISZ18LQ3-h05qvWWMcUnLg-JvUwNb4prOFM4p7iLzd1Ht9BtLCUX2v7ERDd5TbMrESsN_WxdWnHVu6U7_Jxe55-chojLPGAI6Bvt16nG2nKp78nb4JaKHx7XY_L768Wvs-_D1Y9vl2enV4MXirdhAgwz85PYBG2MHoGDFoATepDM4AyoldnwcWRaKO8420jPOxW04w64EMfk8_7dXcl3K9Zmt7F6XBaXMK_VCqaVZmAk6-inF-htXkvq03XKKC1HOY2dMnvKl1xrwWB9T9NiTv13cbHA7L_ydl_e9vL2f3kLXeUv1F2JW1ceXpfEXqodTjdYnqd6xfoLAH6W1A |
CitedBy_id | crossref_primary_10_1039_D4CE00836G crossref_primary_10_1088_1674_4926_24070013 crossref_primary_10_1007_s40820_025_01702_7 crossref_primary_10_1016_j_apsusc_2024_162024 crossref_primary_10_1021_acsnano_4c13483 crossref_primary_10_1103_PhysRevLett_134_046301 crossref_primary_10_1038_s41565_024_01708_z crossref_primary_10_1021_acs_chemmater_4c02987 |
Cites_doi | 10.1021/acsnano.0c02072 10.1038/ncomms14231 10.1126/sciadv.aaw3180 10.1038/ncomms8372 10.1021/acs.nanolett.3c00935 10.1038/s41565-021-01004-0 10.1021/acs.nanolett.5b02834 10.1038/nnano.2017.161 10.1149/05807.0281ecst 10.1021/acsnano.7b02172 10.1126/science.aah4698 10.1038/nmat3633 10.1038/nphys3730 10.1038/s41699-018-0050-x 10.1038/s41565-021-00963-8 10.1103/PhysRevB.92.035435 10.1021/cm5025662 10.1021/nl4007479 10.1088/0953-8984/25/31/312201 10.1021/acs.nanolett.0c05135 10.1021/acs.nanolett.8b04869 10.1126/science.1250564 10.1021/acsaelm.3c00096 10.1103/PhysRevLett.98.075503 10.1038/s41563-022-01398-9 10.1002/aelm.201600468 10.1038/s41563-022-01277-3 10.1038/s41586-021-03472-9 10.1038/ncomms10426 10.1021/acs.chemmater.0c00949 10.1021/nl3040042 10.1103/PhysRevB.102.161106 10.1002/adma.201500846 10.1021/nl503373x 10.1088/1361-648X/aae9cf 10.1038/s41565-021-00942-z 10.1021/acsnano.5b00410 10.1063/1.2717855 10.1021/acsnano.0c05397 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024. The Author(s), under exclusive licence to Springer Nature Limited. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2024. The Author(s), under exclusive licence to Springer Nature Limited. |
DBID | AAYXX CITATION 3V. 7QO 7U5 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. L6V L7M LK8 M0S M1P M7P M7S P5Z P62 P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 |
DOI | 10.1038/s41565-024-01706-1 |
DatabaseName | CrossRef ProQuest Central (Corporate) Biotechnology Research Abstracts Solid State and Superconductivity Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1748-3395 |
EndPage | 961 |
ExternalDocumentID | 10_1038_s41565_024_01706_1 |
GrantInformation_xml | – fundername: Institute for Basic Science (IBS), Korea, under Project Code IBS-R034-D1 – fundername: NSF CUA (PHY-1125846), Samsung Electronics, NSF (PHY-1506284) |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 5M7 5S5 6OB 70F 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ I-F KB. L6V LK8 M1P M7P M7S MM. NNMJJ O9- ODYON P2P P62 PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP ALPWD ATHPR CITATION NFIDA 7QO 7U5 7XB 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ K9. L7M P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c352t-91efd0c93bf78876121731e9ec1408ed1e758b2660735ca20b4c2612f7a2a1233 |
IEDL.DBID | 7X7 |
ISSN | 1748-3387 1748-3395 |
IngestDate | Fri Jul 11 14:38:23 EDT 2025 Sat Aug 23 12:21:34 EDT 2025 Tue Jul 01 01:56:36 EDT 2025 Thu Apr 24 22:53:04 EDT 2025 Fri Feb 21 02:40:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-91efd0c93bf78876121731e9ec1408ed1e758b2660735ca20b4c2612f7a2a1233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4567-731X 0000-0003-1159-584X 0000-0002-8936-9407 0000-0001-9576-8829 0000-0002-3384-4272 0000-0002-7646-3269 0000-0002-3160-358X 0000-0001-8401-6920 0000-0002-4312-3866 0000-0003-1648-142X |
PQID | 3085746496 |
PQPubID | 546299 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_3075701840 proquest_journals_3085746496 crossref_citationtrail_10_1038_s41565_024_01706_1 crossref_primary_10_1038_s41565_024_01706_1 springer_journals_10_1038_s41565_024_01706_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature nanotechnology |
PublicationTitleAbbrev | Nat. Nanotechnol |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Gibertini, Marzari (CR14) 2015; 15 Zou, Liu, Yakobson (CR12) 2012; 13 Lehtinen (CR16) 2015; 9 Wang (CR26) 2014; 26 Liu, Cao, Kang, Banerjee (CR40) 2013; 58 Sung (CR3) 2017; 12 Park (CR38) 2023; 5 Li (CR28) 2021; 16 Ly (CR10) 2016; 7 CR37 Desai (CR36) 2016; 354 Ma (CR19) 2017; 8 Barja (CR21) 2016; 12 Choi (CR11) 2023; 23 Ma (CR22) 2017; 11 Xia (CR18) 2020; 14 Seo (CR31) 2021; 21 Heo (CR1) 2015; 27 Shen (CR35) 2021; 593 Jin (CR25) 2021; 16 Le, Rahman (CR13) 2013; 25 Szabó, Rhyner, Luisier (CR41) 2015; 92 Zhou (CR9) 2013; 13 Lee (CR5) 2020; 32 Heo (CR2) 2015; 6 van der Zande (CR8) 2013; 12 CR24 Jolie (CR15) 2019; 9 Yin (CR33) 2014; 344 Ji (CR27) 2015; 15 Ding, Jiao, Wu, Yakobson (CR29) 2007; 98 Lee (CR34) 2019; 19 Batzill (CR7) 2018; 30 Krishnamurthi, Brocks (CR17) 2020; 102 Zhu (CR20) 2022; 21 Laturia, Van de Put, Vandenberghe (CR42) 2018; 2 Komsa, Krasheninnikov (CR6) 2017; 3 Pop, Mann, Goodson, Dai (CR32) 2007; 101 Dodda (CR39) 2022; 21 Jin (CR4) 2019; 5 Wang (CR30) 2022; 17 Wang (CR23) 2020; 14 1706_CR24 J Park (1706_CR38) 2023; 5 G Jin (1706_CR4) 2019; 5 A Laturia (1706_CR42) 2018; 2 M Gibertini (1706_CR14) 2015; 15 S-Y Seo (1706_CR31) 2021; 21 C-S Lee (1706_CR5) 2020; 32 SB Desai (1706_CR36) 2016; 354 T Li (1706_CR28) 2021; 16 W Jolie (1706_CR15) 2019; 9 J Wang (1706_CR30) 2022; 17 X Zou (1706_CR12) 2012; 13 E Pop (1706_CR32) 2007; 101 X Yin (1706_CR33) 2014; 344 Y Xia (1706_CR18) 2020; 14 S Barja (1706_CR21) 2016; 12 W Liu (1706_CR40) 2013; 58 W Zhou (1706_CR9) 2013; 13 H-P Komsa (1706_CR6) 2017; 3 D Le (1706_CR13) 2013; 25 Á Szabó (1706_CR41) 2015; 92 G Jin (1706_CR25) 2021; 16 O Lehtinen (1706_CR16) 2015; 9 F Ding (1706_CR29) 2007; 98 H Heo (1706_CR1) 2015; 27 AM van der Zande (1706_CR8) 2013; 12 1706_CR37 JH Sung (1706_CR3) 2017; 12 C-S Lee (1706_CR34) 2019; 19 A Dodda (1706_CR39) 2022; 21 H Heo (1706_CR2) 2015; 6 S Krishnamurthi (1706_CR17) 2020; 102 Y Ma (1706_CR19) 2017; 8 M Batzill (1706_CR7) 2018; 30 TH Ly (1706_CR10) 2016; 7 Y Ma (1706_CR22) 2017; 11 P-C Shen (1706_CR35) 2021; 593 L Wang (1706_CR23) 2020; 14 M-Y Choi (1706_CR11) 2023; 23 S Wang (1706_CR26) 2014; 26 Q Ji (1706_CR27) 2015; 15 T Zhu (1706_CR20) 2022; 21 |
References_xml | – volume: 14 start-page: 8299 year: 2020 end-page: 8306 ident: CR23 article-title: Direct observation of one-dimensional Peierls-type charge density wave in twin boundaries of monolayer MoTe publication-title: ACS Nano doi: 10.1021/acsnano.0c02072 – volume: 8 year: 2017 ident: CR19 article-title: Angle resolved photoemission spectroscopy reveals spin charge separation in metallic MoSe grain boundary publication-title: Nat. Commun. doi: 10.1038/ncomms14231 – volume: 5 start-page: eaaw3180 year: 2019 ident: CR4 article-title: Atomically thin three-dimensional membranes of van der Waals semiconductors by wafer-scale growth publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw3180 – ident: CR37 – volume: 6 year: 2015 ident: CR2 article-title: Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks publication-title: Nat. Commun. doi: 10.1038/ncomms8372 – volume: 23 start-page: 4516 year: 2023 end-page: 4523 ident: CR11 article-title: Thermodynamically driven tilt grain boundaries of monolayer crystals using catalytic liquid alloys publication-title: Nano Lett. doi: 10.1021/acs.nanolett.3c00935 – volume: 17 start-page: 33 year: 2022 end-page: 38 ident: CR30 article-title: Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS monolayer on vicinal a-plane sapphire publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-01004-0 – volume: 15 start-page: 6229 year: 2015 end-page: 6238 ident: CR14 article-title: Emergence of one-dimensional wires of free carriers in transition-metal-dichalcogenide nanostructures publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02834 – volume: 12 start-page: 1064 year: 2017 end-page: 1070 ident: CR3 article-title: Coplanar semiconductor–metal circuitry defined on few-layer MoTe via polymorphic heteroepitaxy publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.161 – volume: 58 start-page: 281 year: 2013 end-page: 285 ident: CR40 article-title: High-performance field-effect-transistors on monolayer-WSe publication-title: ECS Trans. doi: 10.1149/05807.0281ecst – volume: 11 start-page: 5130 year: 2017 end-page: 5139 ident: CR22 article-title: Metallic twin grain boundaries embedded in MoSe monolayers grown by molecular beam epitaxy publication-title: ACS Nano doi: 10.1021/acsnano.7b02172 – volume: 354 start-page: 99 year: 2016 end-page: 102 ident: CR36 article-title: MoS transistors with 1-nanometer gate lengths publication-title: Science doi: 10.1126/science.aah4698 – volume: 12 start-page: 554 year: 2013 end-page: 561 ident: CR8 article-title: Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide publication-title: Nat. Mater. doi: 10.1038/nmat3633 – volume: 12 start-page: 751 year: 2016 end-page: 756 ident: CR21 article-title: Charge density wave order in 1D mirror twin boundaries of single-layer MoSe publication-title: Nat. Phys. doi: 10.1038/nphys3730 – volume: 2 year: 2018 ident: CR42 article-title: Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk publication-title: npj 2D Mater. Appl. doi: 10.1038/s41699-018-0050-x – volume: 16 start-page: 1201 year: 2021 end-page: 1207 ident: CR28 article-title: Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00963-8 – volume: 92 start-page: 035435 year: 2015 ident: CR41 article-title: Ab initio simulation of single- and few-layer MoS transistors: effect of electron–phonon scattering publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.035435 – volume: 26 start-page: 6371 year: 2014 end-page: 6379 ident: CR26 article-title: Shape evolution of monolayer MoS crystals grown by chemical vapor deposition publication-title: Chem. Mater. doi: 10.1021/cm5025662 – volume: 13 start-page: 2615 year: 2013 end-page: 2622 ident: CR9 article-title: Intrinsic structural defects in monolayer molybdenum disulfide publication-title: Nano Lett. doi: 10.1021/nl4007479 – volume: 25 start-page: 312201 year: 2013 ident: CR13 article-title: Joined edges in MoS : metallic and half-metallic wires publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/25/31/312201 – volume: 21 start-page: 3341 year: 2021 end-page: 3354 ident: CR31 article-title: Identification of point defects in atomically thin transition-metal dichalcogenide semiconductors as active dopants publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c05135 – volume: 19 start-page: 1814 year: 2019 end-page: 1820 ident: CR34 article-title: Epitaxial van der Waals contacts between transition-metal dichalcogenide monolayer polymorphs publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b04869 – volume: 344 start-page: 488 year: 2014 end-page: 490 ident: CR33 article-title: Edge nonlinear optics on a MoS atomic monolayer publication-title: Science doi: 10.1126/science.1250564 – volume: 5 start-page: 2239 year: 2023 end-page: 2248 ident: CR38 article-title: Investigation of optimal architecture of MoS channel field-effect transistors on a sub-2 nm process node publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.3c00096 – volume: 98 start-page: 075503 year: 2007 ident: CR29 article-title: Pseudoclimb and dislocation dynamics in superplastic nanotubes publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.075503 – volume: 21 start-page: 1379 year: 2022 end-page: 1387 ident: CR39 article-title: Active pixel sensor matrix based on monolayer MoS phototransistor array publication-title: Nat. Mater. doi: 10.1038/s41563-022-01398-9 – volume: 9 start-page: 011055 year: 2019 ident: CR15 article-title: Tomonaga–Luttinger liquid in a box: electrons confined within MoS mirror-twin boundaries publication-title: Phys. Rev. X – volume: 3 start-page: 1600468 year: 2017 ident: CR6 article-title: Engineering the electronic properties of two-dimensional transition metal dichalcogenides by introducing mirror twin boundaries publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201600468 – volume: 21 start-page: 748 year: 2022 end-page: 753 ident: CR20 article-title: Imaging gate-tunable Tomonaga–Luttinger liquids in 1H-MoSe mirror twin boundaries publication-title: Nat. Mater. doi: 10.1038/s41563-022-01277-3 – volume: 593 start-page: 211 year: 2021 end-page: 217 ident: CR35 article-title: Ultralow contact resistance between semimetal and monolayer semiconductors publication-title: Nature doi: 10.1038/s41586-021-03472-9 – volume: 7 year: 2016 ident: CR10 article-title: Misorientation-angle-dependent electrical transport across molybdenum disulfide grain boundaries publication-title: Nat. Commun. doi: 10.1038/ncomms10426 – volume: 32 start-page: 5084 year: 2020 end-page: 5090 ident: CR5 article-title: Programmed band gap modulation within van der Waals semiconductor monolayers by metalorganic vapor-phase epitaxy publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c00949 – volume: 13 start-page: 253 year: 2012 end-page: 258 ident: CR12 article-title: Predicting dislocations and grain boundaries in two-dimensional metal-disulfides from the first principles publication-title: Nano Lett. doi: 10.1021/nl3040042 – volume: 102 start-page: 161106 year: 2020 ident: CR17 article-title: Spin/charge density waves at the boundaries of transition metal dichalcogenides publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.161106 – volume: 27 start-page: 3803 year: 2015 end-page: 3810 ident: CR1 article-title: Rotation-misfit-free heteroepitaxial stacking and stitching growth of hexagonal transition-metal dichalcogenide monolayers by nucleation kinetics controls publication-title: Adv. Mater. doi: 10.1002/adma.201500846 – volume: 15 start-page: 198 year: 2015 end-page: 205 ident: CR27 article-title: Unravelling orientation distribution and merging behavior of monolayer MoS domains on sapphire publication-title: Nano Lett. doi: 10.1021/nl503373x – volume: 30 start-page: 493001 year: 2018 ident: CR7 article-title: Mirror twin grain boundaries in molybdenum dichalcogenides publication-title: J. Phys. Condens. Matter doi: 10.1088/1361-648X/aae9cf – ident: CR24 – volume: 16 start-page: 1092 year: 2021 end-page: 1098 ident: CR25 article-title: Heteroepitaxial van der Waals semiconductor superlattices publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00942-z – volume: 9 start-page: 3274 year: 2015 end-page: 3283 ident: CR16 article-title: Atomic scale microstructure and properties of Se-deficient two-dimensional MoSe publication-title: ACS Nano doi: 10.1021/acsnano.5b00410 – volume: 101 start-page: 093710 year: 2007 ident: CR32 article-title: Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates publication-title: J. Appl. Phys. doi: 10.1063/1.2717855 – volume: 14 start-page: 10716 year: 2020 end-page: 10722 ident: CR18 article-title: Charge density modulation and the Luttinger liquid state in MoSe mirror twin boundaries publication-title: ACS Nano doi: 10.1021/acsnano.0c05397 – volume: 27 start-page: 3803 year: 2015 ident: 1706_CR1 publication-title: Adv. Mater. doi: 10.1002/adma.201500846 – volume: 32 start-page: 5084 year: 2020 ident: 1706_CR5 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c00949 – volume: 11 start-page: 5130 year: 2017 ident: 1706_CR22 publication-title: ACS Nano doi: 10.1021/acsnano.7b02172 – volume: 5 start-page: eaaw3180 year: 2019 ident: 1706_CR4 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw3180 – volume: 23 start-page: 4516 year: 2023 ident: 1706_CR11 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.3c00935 – volume: 15 start-page: 198 year: 2015 ident: 1706_CR27 publication-title: Nano Lett. doi: 10.1021/nl503373x – volume: 14 start-page: 8299 year: 2020 ident: 1706_CR23 publication-title: ACS Nano doi: 10.1021/acsnano.0c02072 – volume: 25 start-page: 312201 year: 2013 ident: 1706_CR13 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/25/31/312201 – volume: 17 start-page: 33 year: 2022 ident: 1706_CR30 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-01004-0 – volume: 21 start-page: 1379 year: 2022 ident: 1706_CR39 publication-title: Nat. Mater. doi: 10.1038/s41563-022-01398-9 – volume: 102 start-page: 161106 year: 2020 ident: 1706_CR17 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.161106 – volume: 30 start-page: 493001 year: 2018 ident: 1706_CR7 publication-title: J. Phys. Condens. Matter doi: 10.1088/1361-648X/aae9cf – volume: 16 start-page: 1201 year: 2021 ident: 1706_CR28 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00963-8 – volume: 9 start-page: 011055 year: 2019 ident: 1706_CR15 publication-title: Phys. Rev. X – volume: 12 start-page: 554 year: 2013 ident: 1706_CR8 publication-title: Nat. Mater. doi: 10.1038/nmat3633 – volume: 92 start-page: 035435 year: 2015 ident: 1706_CR41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.035435 – volume: 12 start-page: 751 year: 2016 ident: 1706_CR21 publication-title: Nat. Phys. doi: 10.1038/nphys3730 – volume: 8 year: 2017 ident: 1706_CR19 publication-title: Nat. Commun. doi: 10.1038/ncomms14231 – volume: 7 year: 2016 ident: 1706_CR10 publication-title: Nat. Commun. doi: 10.1038/ncomms10426 – volume: 3 start-page: 1600468 year: 2017 ident: 1706_CR6 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201600468 – volume: 26 start-page: 6371 year: 2014 ident: 1706_CR26 publication-title: Chem. Mater. doi: 10.1021/cm5025662 – ident: 1706_CR24 – volume: 354 start-page: 99 year: 2016 ident: 1706_CR36 publication-title: Science doi: 10.1126/science.aah4698 – volume: 344 start-page: 488 year: 2014 ident: 1706_CR33 publication-title: Science doi: 10.1126/science.1250564 – volume: 21 start-page: 748 year: 2022 ident: 1706_CR20 publication-title: Nat. Mater. doi: 10.1038/s41563-022-01277-3 – volume: 15 start-page: 6229 year: 2015 ident: 1706_CR14 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02834 – ident: 1706_CR37 – volume: 5 start-page: 2239 year: 2023 ident: 1706_CR38 publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.3c00096 – volume: 13 start-page: 2615 year: 2013 ident: 1706_CR9 publication-title: Nano Lett. doi: 10.1021/nl4007479 – volume: 593 start-page: 211 year: 2021 ident: 1706_CR35 publication-title: Nature doi: 10.1038/s41586-021-03472-9 – volume: 6 year: 2015 ident: 1706_CR2 publication-title: Nat. Commun. doi: 10.1038/ncomms8372 – volume: 13 start-page: 253 year: 2012 ident: 1706_CR12 publication-title: Nano Lett. doi: 10.1021/nl3040042 – volume: 9 start-page: 3274 year: 2015 ident: 1706_CR16 publication-title: ACS Nano doi: 10.1021/acsnano.5b00410 – volume: 14 start-page: 10716 year: 2020 ident: 1706_CR18 publication-title: ACS Nano doi: 10.1021/acsnano.0c05397 – volume: 101 start-page: 093710 year: 2007 ident: 1706_CR32 publication-title: J. Appl. Phys. doi: 10.1063/1.2717855 – volume: 12 start-page: 1064 year: 2017 ident: 1706_CR3 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.161 – volume: 2 year: 2018 ident: 1706_CR42 publication-title: npj 2D Mater. Appl. doi: 10.1038/s41699-018-0050-x – volume: 16 start-page: 1092 year: 2021 ident: 1706_CR25 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00942-z – volume: 98 start-page: 075503 year: 2007 ident: 1706_CR29 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.075503 – volume: 21 start-page: 3341 year: 2021 ident: 1706_CR31 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c05135 – volume: 58 start-page: 281 year: 2013 ident: 1706_CR40 publication-title: ECS Trans. doi: 10.1149/05807.0281ecst – volume: 19 start-page: 1814 year: 2019 ident: 1706_CR34 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b04869 |
SSID | ssj0052924 |
Score | 2.529364 |
Snippet | In atomically thin van der Waals materials, grain boundaries—the line defects between adjacent crystal grains with tilted in-plane rotations—are omnipresent.... In atomically thin van der Waals materials, grain boundaries-the line defects between adjacent crystal grains with tilted in-plane rotations-are omnipresent.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 955 |
SubjectTerms | 140/125 142/126 639/301/357/1018 639/301/357/551 639/925/357/995 639/925/927/1007 Angle of reflection Boundaries Capacitance Chemistry and Materials Science Crystal defects Crystals Dislocations Electron states Epitaxy Field effect transistors Gates (circuits) Grain boundaries Materials Science Molybdenum disulfide Nanotechnology Nanotechnology and Microengineering Semiconductor devices Transistor circuits Transistors Twin boundaries |
Title | Integrated 1D epitaxial mirror twin boundaries for ultrascaled 2D MoS2 field-effect transistors |
URI | https://link.springer.com/article/10.1038/s41565-024-01706-1 https://www.proquest.com/docview/3085746496 https://www.proquest.com/docview/3075701840 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RS-QwEB48fbl7ODw9cT1PItybV2yTtmmfxFP39EART2HfQpJmQdBW2y76851J2109OF9KoUkDmUlmvszkG4AfReR4keYmkC5HgMKtCExkdJCKSIsitaE1dA55fpGe3sR_JsmkP3Br-rTKYU_0G3VRWToj3xdExR6ncZ4ePDwGVDWKoqt9CY0PsELUZaTVcjIHXAnPu6K2Ms4ChGKyvzQTimy_IeBCd5MpB0NSLZq3hmnhbf4TIPV2Z7wKn3uHkR12Ev4CS65cg0-vaATXQZ0NnA8Fi46Zo0Igz6hX7P62rquatU-3JTO-fhIBY4Z-KpvdtbVuUEDYhx-z8-ovZz6bLegyPFhLRsxziDRf4WZ8cn10GvSFEwKL_lSLG5ibFqHNhZlSsiCRhEkRudxZhFOZQ_kgSjBomnF9J1bz0MSWqMSmUnONpkxswHJZlW4TGNlz7WzquDZxPkW8jG-ySIzW1kgRjyAaZk3ZnlWcilvcKR_dFpnqZlrhTCs_0yoawd68z0PHqfFu6-1BGKpfX41aaMMIduefcWVQuEOXrppRG5nIkBDsCH4OQlz84v8jbr0_4jf4yL3eUM7uNiy39cx9R8-kNTte_fCZjX_vwMqvk4vLqxcAA-At |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9RAFH9BPKgHgyhxFXBI9KQN7Uzb2R4IIazrrrBchITbMDOdTUiwxbYb9J_yb-S9acuqidy4NWlnpnnzm_cx7wvgfR45nqeZCaTL0EDhVgQmMjpIRaRFntrQGrqHnJ2kk7P463lyvgK_-1wYCqvseaJn1Hlp6Y58V1Ap9jiNs3T_-kdAXaPIu9q30GhhceR-3aDJVu9NR7i_Hzgffz49nARdV4HAorLR4Ol28zy0mTBziqSjClpSRC5zFm2NocOfRxXaoNxC8CdW89DElupszaXmGvm8wHkfweNYoCSnzPTxl57zJzxrm-jKeBig6Se7JJ1QDHdrMpQoF5piPiT1vvlbEC61238csl7OjdfgeaegsoMWUS9gxRXr8OyPsoUvQU37GhM5i0bMUeORn4hj9v2yqsqKNTeXBTO-XxMZ4gz1Yra4aipdIyBwDB-xWfmNMx89F7QRJawhoelrltSv4OxBSLoBq0VZuNfASH_QzqaOaxNnc7TP8UnmidHaGiniAUQ91ZTtqphTM40r5b3pYqhaSiuktPKUVtEAPt6NuW5reNz79Wa_Gao7z7Vaom8AO3ev8SSSe0UXrlzQNzKRIVnMA_jUb-Jyiv-v-Ob-Fd_Bk8np7FgdT0-O3sJT7jFE8cKbsNpUC7eFWlFjtj0UGVw8NPZvAfVJGMg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRaraA-pTXaCtK7WnNtrETuLNoapalhVbygq1ReJmbMeRkCCBJCvoX-uv60weLEWCG7dIiW1l_Nkzn2c8A_A-DRxP48R40iVIULgVngmM9mIRaJHG1reGziH35vHOQfj9MDpcgb_9XRgKq-z3xGajTgtLZ-QjQanYwzhM4lHWhUXsT6Zfzs49qiBFnta-nEYLkV335wLpW_V5NsG5_sD5dPv31o7XVRjwLBoeNa50l6W-TYTJKKqOsmlJEbjEWeQdY4c_gua0QR2GCyGymvsmtJRzK5Oaa9zzBfb7AFYlsaIBrH7bnu__7PVAxJO2pK4Mxx4SQdld2fHFeFQRbaKb0RQBIqkSzv9qcWnr3nDPNlpv-gTWOnOVfW3x9RRWXP4MHl9LYvgc1KzPOJGyYMIclSG5RFSz0-OyLEpWXxznzDTVm4iWM7SS2eKkLnWF8MA2fML2il-cNbF0XhtfwmpSoU0Gk-oFHNyLUF_CIC9y9woYWRPa2dhxbcIkQ7aOTzKNjNbWSBEOIeilpmyX05xKa5yoxrcuxqqVtEJJq0bSKhjCx6s2Z21Gjzu_3uwnQ3Wru1JLLA7h3dVrXJfkbNG5Kxb0jYykT_x5CJ_6SVx2cfuI63eP-BYeIu7Vj9l8dwMe8QZCFDy8CYO6XLjXaCLV5k2HRQZH9w3_fwD8Hlo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+1D+epitaxial+mirror+twin+boundaries+for+ultrascaled+2D+MoS2+field-effect+transistors&rft.jtitle=Nature+nanotechnology&rft.au=Ahn%2C+Heonsu&rft.au=Moon%2C+Gunho&rft.au=Jung%2C+Hang-gyo&rft.au=Deng%2C+Bingchen&rft.date=2024-07-01&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=19&rft.issue=7&rft.spage=955&rft.epage=961&rft_id=info:doi/10.1038%2Fs41565-024-01706-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41565_024_01706_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon |