Robotic Cell Injection System With Position and Force Control: Toward Automatic Batch Biomanipulation

Biological cell injection is laborious work that requires lengthy training and suffers from a low success rate. In this paper, a robotic cell-injection system for automatic injection of batch-suspended cells is proposed. To facilitate the process, these suspended cells are held and fixed to a cell a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on robotics Vol. 25; no. 3; pp. 727 - 737
Main Authors Huang, H.B., Dong Sun, Mills, J.K., Shuk Han Cheng
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.06.2009
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Biological cell injection is laborious work that requires lengthy training and suffers from a low success rate. In this paper, a robotic cell-injection system for automatic injection of batch-suspended cells is proposed. To facilitate the process, these suspended cells are held and fixed to a cell array by a specially designed cell-holding device, and injected one by one through an ldquoout-of-planerdquo cell-injection process. A micropipette equipped with a polyvinylidene fluoride microforce sensor to measure real-time injection force is integrated in the proposed system. Through calibration, an empirical relationship between the cell-injection force and the desired injector pipette trajectory is obtained in advance. Then, after decoupling the out-of-plane cell injection into a position control in the X - Y horizontal plane and an impedance control in the Z -axis, a position and force control algorithm is developed to control the injection pipette. The depth motion of the injector pipette, which cannot be observed by microscope, is indirectly controlled via the impedance control, and the desired force is determined from the online X - Y position control and cell calibration results. Finally, experimental results demonstrate the effectiveness of the proposed approach.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1552-3098
1941-0468
DOI:10.1109/TRO.2009.2017109