Characterization of a quasi-real-time lighting computing system based on HDR imaging
In this paper we present the characterization of a calibrated embedded system for quasi real-time lighting computation based on HDR sky monitoring. To quantify its accuracy in lighting computation, we positioned the device in front of a test module with unilateral-façades to measure the luminance di...
Saved in:
Published in | Energy procedia Vol. 122; pp. 649 - 654 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper we present the characterization of a calibrated embedded system for quasi real-time lighting computation based on HDR sky monitoring. To quantify its accuracy in lighting computation, we positioned the device in front of a test module with unilateral-façades to measure the luminance distribution of the sky and ground dome, including that of the sun, the clouds and landscape, followed by on-board illuminance computation in the device. An experiment was conducted on two representative days, with overcast and clear sky respectively. The embedded device computed the illuminance for 5 virtual sensors which was referred to the measurement by 5 lux-meters at the identical positions synchronously to assess its relative error. Compared with the Perez all-weather sky model, the embedded device was indicated to be more reliable and achieved 10%-25% higher accuracy in transient lighting computation of horizontal illuminance based on HDR imaging and luminance mapping. |
---|---|
ISSN: | 1876-6102 1876-6102 |
DOI: | 10.1016/j.egypro.2017.07.364 |