Overexpression of miR-149-5p Attenuates Cerebral Ischemia/Reperfusion (I/R) Injury by Targeting Notch2

Ischemic stroke is one of the leading causes of death and disability worldwide. Although miR-149-5p downregulation is observed in rats after ischemia/reperfusion (I/R) injury, its function and role in ischemic stroke remain unclear. This study aimed to investigate the roles of miR-149-5p in I/R inju...

Full description

Saved in:
Bibliographic Details
Published inNeuromolecular medicine Vol. 24; no. 3; pp. 279 - 289
Main Authors Wang, Xiaoya, Xu, Qingbao, Wang, Shali
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ischemic stroke is one of the leading causes of death and disability worldwide. Although miR-149-5p downregulation is observed in rats after ischemia/reperfusion (I/R) injury, its function and role in ischemic stroke remain unclear. This study aimed to investigate the roles of miR-149-5p in I/R injury. The results showed that miR-149-5p was significantly downregulated in brain tissues of rats subjected to middle cerebral artery occlusion (MCAO) and primary cortical neurons subject to oxygen and glucose deprivation (OGD). MiR-149-5p overexpression effectively reduced MCAO/R-induced infarct volume, neurological score, and brain water content as well as OGD/R-induced cortical neurons apoptosis and OGD/R-induced expression of TNF-α, IL-4, IL-6, IL-1β, and COX-2. Moreover, Notch2 was identified as a target of miR-149-5p and Notch2 overexpression significantly attenuated the inhibitory effects of miR-149-5p mimics on inflammation and apoptosis. Taken together, our study revealed that miR-149-5p overexpression protects the rat brain against I/R injury by regulating Notch2-mediated inflammation and apoptosis pathway.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1535-1084
1559-1174
1559-1174
DOI:10.1007/s12017-021-08685-9