Optimizing Bioplastic Production of C. necator Under Mixotrophic Fermentation with CO2 and Glucose

Purpose Herein, we examined C. necator for its production of bioplastic under mixotrophic fermentation. The mixotrophic process utilized dual carbon sources of mixed CO 2 and glucose for the production of PHB. Methods C. necator was optimized through adaptive laboratory evolution under a mixed carbo...

Full description

Saved in:
Bibliographic Details
Published inWaste and biomass valorization Vol. 15; no. 5; pp. 2857 - 2867
Main Authors Unaha, Dueanchai, Jaihao, Pongpipat, Unrean, Pornkamol, Champreda, Verawat
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.05.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose Herein, we examined C. necator for its production of bioplastic under mixotrophic fermentation. The mixotrophic process utilized dual carbon sources of mixed CO 2 and glucose for the production of PHB. Methods C. necator was optimized through adaptive laboratory evolution under a mixed carbon sources of CO 2 and glucose. The isolated mutant was then studied for its ability to co-utilize glucose and CO 2 carbon sources for growth and for PHB production. Experimental design based on central composition design was implemented to optimize PHB production under mixotrophic fermentation. Parameters effecting PHB accumulation including CO 2 and glucose substrate ratio, cell dosage and aeration were studied. Results Under optimized mixotrophic batch process, 0.22 g/L of PHB and 28% PHB content was reached from mixed carbon sources. Further CO 2 and glucose co-feeding strategy optimization in mixotrophic fed-batch, PHB titer was elevated to 0.41 g/L. Conclusion Overall, this study offered a promising alternative for CO 2 valorization through the mixotrophic conversion of CO 2 and glucose to PHB by C. necator , which could provide basis in future Bio-CCU technology development for climate change mitigation. Graphical Abstract
AbstractList Purpose Herein, we examined C. necator for its production of bioplastic under mixotrophic fermentation. The mixotrophic process utilized dual carbon sources of mixed CO 2 and glucose for the production of PHB. Methods C. necator was optimized through adaptive laboratory evolution under a mixed carbon sources of CO 2 and glucose. The isolated mutant was then studied for its ability to co-utilize glucose and CO 2 carbon sources for growth and for PHB production. Experimental design based on central composition design was implemented to optimize PHB production under mixotrophic fermentation. Parameters effecting PHB accumulation including CO 2 and glucose substrate ratio, cell dosage and aeration were studied. Results Under optimized mixotrophic batch process, 0.22 g/L of PHB and 28% PHB content was reached from mixed carbon sources. Further CO 2 and glucose co-feeding strategy optimization in mixotrophic fed-batch, PHB titer was elevated to 0.41 g/L. Conclusion Overall, this study offered a promising alternative for CO 2 valorization through the mixotrophic conversion of CO 2 and glucose to PHB by C. necator , which could provide basis in future Bio-CCU technology development for climate change mitigation. Graphical Abstract
PurposeHerein, we examined C. necator for its production of bioplastic under mixotrophic fermentation. The mixotrophic process utilized dual carbon sources of mixed CO2 and glucose for the production of PHB.MethodsC. necator was optimized through adaptive laboratory evolution under a mixed carbon sources of CO2 and glucose. The isolated mutant was then studied for its ability to co-utilize glucose and CO2 carbon sources for growth and for PHB production. Experimental design based on central composition design was implemented to optimize PHB production under mixotrophic fermentation. Parameters effecting PHB accumulation including CO2 and glucose substrate ratio, cell dosage and aeration were studied.ResultsUnder optimized mixotrophic batch process, 0.22 g/L of PHB and 28% PHB content was reached from mixed carbon sources. Further CO2 and glucose co-feeding strategy optimization in mixotrophic fed-batch, PHB titer was elevated to 0.41 g/L.ConclusionOverall, this study offered a promising alternative for CO2 valorization through the mixotrophic conversion of CO2 and glucose to PHB by C. necator, which could provide basis in future Bio-CCU technology development for climate change mitigation.
Author Jaihao, Pongpipat
Champreda, Verawat
Unaha, Dueanchai
Unrean, Pornkamol
Author_xml – sequence: 1
  givenname: Dueanchai
  surname: Unaha
  fullname: Unaha, Dueanchai
  organization: National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA)
– sequence: 2
  givenname: Pongpipat
  surname: Jaihao
  fullname: Jaihao, Pongpipat
  organization: National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA)
– sequence: 3
  givenname: Pornkamol
  surname: Unrean
  fullname: Unrean, Pornkamol
  email: pornkamol.unr@biotec.or.th
  organization: National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA)
– sequence: 4
  givenname: Verawat
  surname: Champreda
  fullname: Champreda, Verawat
  organization: National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA)
BookMark eNp9kE9PwzAMxSMEEgP2BThF4lyIna5NjzDBQAKNA5O4RWmTjqAtKUkm_nx6CkUgcdjBsg_vZz-_A7LrvDOEHAM7BcbKswhY5FXGkH8VZxnskBGIssywmDzu_s457JNxjM-MMQQQyMsRqeddsmv7Yd2SXljfrVRMtqH3wetNk6x31Ld0ekqdaVTygS6cNoHe2Tefgu-eeumVCWvjkvoWv9r0RKdzpMppOlttGh_NEdlr1Sqa8U8_JIury4fpdXY7n91Mz2-zhk8wZUJwAI1lU7W9taI0NeZQ8BbRGKiM1ohKF1znFVYlCMBa562pWV0JpbEV_JCcDHu74F82Jib57DfB9SclZzmISkBR9CocVE3wMQbTyi7YtQrvEpj8ilMOcco-Svkdp4QeEv-gxg4fp6DsajvKBzT2d9zShD9XW6hPc_eLPw
CitedBy_id crossref_primary_10_1007_s11274_024_04200_x
Cites_doi 10.1039/C8SE00281A
10.1007/s10924-017-1140-0
10.1007/s11274-018-2473-0
10.1038/ncomms14724
10.1007/s11306-017-1302-z
10.1002/elsc.201700102
10.1038/ncomms6933
10.3390/fermentation8030125
10.1186/s12934-022-01962-7
10.3390/polym12071496
10.1186/s40643-019-0282-4
10.1002/biot.201700081
10.3390/app112411638
10.1016/j.biortech.2019.122676
10.3389/fbioe.2022.946085
10.1007/s00253-010-2699-8
10.1007/s12010-016-2189-2
10.4014/jmb.1308.08052
10.1002/btpr.3302
10.1007/s11306-013-0567-0
10.1016/j.ymben.2020.04.009
10.1002/anie.201000533
10.1016/j.procbio.2019.07.007
10.1002/cyto.a.20197
10.3390/bioengineering6040089
10.1007/s00253-008-1757-y
10.1002/btpr.1914
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s12649-023-02330-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1877-265X
EndPage 2867
ExternalDocumentID 10_1007_s12649_023_02330_1
GrantInformation_xml – fundername: National Research Council of Thailand
  grantid: Grant number N42A650256
  funderid: http://dx.doi.org/10.13039/501100004704
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2JY
2VQ
30V
4.4
406
408
409
40D
8TC
96X
AAAVM
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATLR
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
AZFZN
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
H13
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9P
PT4
QOS
R89
R9I
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
WK8
Z45
Z5O
Z7U
Z7V
Z7W
Z7Y
Z7Z
Z81
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c352t-88311d27c9f82367eb24163f22ee19edd22ad63d492971812bd4feb0b98ad2f83
IEDL.DBID U2A
ISSN 1877-2641
IngestDate Fri Jul 25 23:59:30 EDT 2025
Tue Jul 01 04:03:07 EDT 2025
Thu Apr 24 22:56:16 EDT 2025
Fri Feb 21 02:41:41 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords valorization
CO
Mixotrophy
Polyhydroxyalkanoate
Design of experiment
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-88311d27c9f82367eb24163f22ee19edd22ad63d492971812bd4feb0b98ad2f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3041898166
PQPubID 2044093
PageCount 11
ParticipantIDs proquest_journals_3041898166
crossref_primary_10_1007_s12649_023_02330_1
crossref_citationtrail_10_1007_s12649_023_02330_1
springer_journals_10_1007_s12649_023_02330_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Waste and biomass valorization
PublicationTitleAbbrev Waste Biomass Valor
PublicationYear 2024
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Blunt, Dartiailh, Sparling, Gapes, Levin, Cicek (CR24) 2019; 6
Możejko, Ciesielski (CR26) 2014; 30
Liu, Wu, Jackstell, Beller (CR5) 2015; 6
Poblete-Castro, Rodriguez, Lam, Kessler (CR27) 2014; 24
Liang, Lindberg, Lindblad (CR14) 2018; 2
Jawed, Irorere, Bommareddy, Minton, Kovács (CR8) 2022; 8
Li, Wilkins (CR10) 2020; 299
Kuttiraja, Douha, Valéro, Tyagi (CR22) 2016; 180
Kanno, Carroll, Atsumi (CR13) 2017; 8
Aramvash, Moazzeni Zavareh, Gholami Banadkuki (CR19) 2017; 18
Brojanigo, Parro, Cazzorla, Favaro, Basaglia, Casella (CR17) 2020; 12
Wang, Liu, Tao, Ren, Gao, Liu, Yang (CR16) 2021; 11
Kim, Jang, Gong, Lee, Um, Kim, Ko (CR11) 2022; 21
Alagesan, Minton, Malys (CR7) 2018; 14
Yang, Brigham, Budde, Boccazzi, Willis, Hassan, Yusof, Rha, Sinskey (CR28) 2010; 87
Federsel, Jackstell, Beller (CR1) 2010; 49
Zhang, Jiang, Tsui, Loh, Dai, Tong (CR6) 2022
Tee, Grinham, Othusitse, González-Villanueva, Johnson, Wong (CR2) 2017
Kacmar, Carlson, Balogh, Srienc (CR20) 2006; 69
Dalsasso, Pavan, Bordignon, Aragão, Poletto (CR18) 2019; 85
Aramvash, Zavareh, Banadkuki (CR21) 2018; 18
Unrean, Champreda (CR15) 2023
Keunun, Rakkarn, Yunu, Paichid, Prasertsan, Sangkharak (CR25) 2018; 26
Yu (CR4) 2018; 34
Fukui, Chou, Harada, Orita, Nakayama, Bamba, Nakamura, Fukusaki (CR3) 2014; 10
Tang, Weng, Peng, Han (CR12) 2020; 61
Serafim, Lemos, Albuquerque, Reis (CR9) 2008; 81
Unrean, Tee, Wong (CR23) 2019; 6
B Wang (2330_CR16) 2021; 11
YH Yang (2330_CR28) 2010; 87
T Fukui (2330_CR3) 2014; 10
R Tang (2330_CR12) 2020; 61
M Kuttiraja (2330_CR22) 2016; 180
C Federsel (2330_CR1) 2010; 49
Q Liu (2330_CR5) 2015; 6
P Keunun (2330_CR25) 2018; 26
K Jawed (2330_CR8) 2022; 8
W Blunt (2330_CR24) 2019; 6
LS Serafim (2330_CR9) 2008; 81
F Liang (2330_CR14) 2018; 2
M Kanno (2330_CR13) 2017; 8
I Poblete-Castro (2330_CR27) 2014; 24
RR Dalsasso (2330_CR18) 2019; 85
J Yu (2330_CR4) 2018; 34
P Unrean (2330_CR15) 2023
P Unrean (2330_CR23) 2019; 6
J Kacmar (2330_CR20) 2006; 69
KL Tee (2330_CR2) 2017
A Aramvash (2330_CR21) 2018; 18
A Aramvash (2330_CR19) 2017; 18
J Możejko (2330_CR26) 2014; 30
L Zhang (2330_CR6) 2022
S Alagesan (2330_CR7) 2018; 14
S Kim (2330_CR11) 2022; 21
S Brojanigo (2330_CR17) 2020; 12
M Li (2330_CR10) 2020; 299
References_xml – volume: 2
  start-page: 2583
  year: 2018
  end-page: 2600
  ident: CR14
  article-title: Engineering photoautotrophic carbon fixation for enhanced growth and productivity
  publication-title: Sustain. Energy Fuels
  doi: 10.1039/C8SE00281A
– volume: 26
  start-page: 2459
  issue: 6
  year: 2018
  end-page: 2466
  ident: CR25
  article-title: The production of polyhydroxybutyrate by two-step fermentation and the application of polyhydroxybutyrate as a novel substrate for a biolubricant
  publication-title: J. Polym. Environ.
  doi: 10.1007/s10924-017-1140-0
– volume: 34
  start-page: 89
  issue: 7
  year: 2018
  ident: CR4
  article-title: Fixation of carbon dioxide by a hydrogen-oxidizing bacterium for value-added products
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-018-2473-0
– volume: 8
  year: 2017
  ident: CR13
  article-title: Global metabolic rewiring for improved CO fixation and chemical production in cyanobacteria
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14724
– volume: 14
  start-page: 9
  issue: 1
  year: 2018
  ident: CR7
  article-title: (13)C-assisted metabolic flux analysis to investigate heterotrophic and mixotrophic metabolism in H16
  publication-title: Metabolomics
  doi: 10.1007/s11306-017-1302-z
– volume: 18
  start-page: 20
  issue: 1
  year: 2017
  end-page: 28
  ident: CR19
  article-title: Comparison of different solvents for extraction of polyhydroxybutyrate from
  publication-title: Eng. Life Sci.
  doi: 10.1002/elsc.201700102
– volume: 6
  start-page: 5933
  issue: 1
  year: 2015
  ident: CR5
  article-title: Using carbon dioxide as a building block in organic synthesis
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6933
– volume: 8
  issue: 3
  year: 2022
  ident: CR8
  article-title: Establishing mixotrophic growth of H16 on CO and volatile fatty acids
  publication-title: Fermentation
  doi: 10.3390/fermentation8030125
– volume: 21
  start-page: 231
  issue: 1
  year: 2022
  ident: CR11
  article-title: Engineering H16 for enhanced lithoautotrophic poly(3-hydroxybutyrate) production from CO
  publication-title: Microb. Cell Fact.
  doi: 10.1186/s12934-022-01962-7
– volume: 12
  issue: 7
  year: 2020
  ident: CR17
  article-title: Conversion of starchy waste streams into polyhydroxyalkanoates using DSM 545
  publication-title: Polymers
  doi: 10.3390/polym12071496
– volume: 6
  start-page: 49
  issue: 1
  year: 2019
  ident: CR23
  article-title: Metabolic pathway analysis for in silico design of efficient autotrophic production of advanced biofuels
  publication-title: Bioresour. Bioprocess.
  doi: 10.1186/s40643-019-0282-4
– year: 2017
  ident: CR2
  article-title: An efficient transformation method for the bioplastic-producing Knallgas bacterium H16
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201700081
– volume: 11
  start-page: 11638
  issue: 24
  year: 2021
  ident: CR16
  article-title: Preparation and properties of CO micro-nanobubble water based on response surface methodology
  publication-title: Appl. Sci.
  doi: 10.3390/app112411638
– volume: 299
  year: 2020
  ident: CR10
  article-title: Fed-batch cultivation and adding supplements to increase yields of polyhydroxybutyrate production by from corn stover alkaline pretreatment liquor
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.122676
– year: 2022
  ident: CR6
  article-title: A review on enhancing fermentation for poly(3-hydroxybutyrate) (PHB) production from low-cost carbon sources
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2022.946085
– volume: 18
  start-page: 20
  year: 2018
  end-page: 28
  ident: CR21
  article-title: Comparison of different solvents for extraction of polyhydroxybutyrate from
  publication-title: Eng. Life Sci.
  doi: 10.1002/elsc.201700102
– volume: 87
  start-page: 2037
  year: 2010
  end-page: 2045
  ident: CR28
  article-title: Optimization of growth media components for polyhydroxyalkanoate (PHA) production from organic acids by
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-010-2699-8
– volume: 180
  start-page: 1586
  issue: 8
  year: 2016
  end-page: 1600
  ident: CR22
  article-title: Elucidating the effect of glycerol concentration and C/N ratio on lipid production using SKY7
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-016-2189-2
– volume: 24
  start-page: 59
  issue: 1
  year: 2014
  end-page: 69
  ident: CR27
  article-title: Improved production of medium-chain-length polyhydroxyalkanoates in glucose-based fed-batch cultivations of metabolically engineered strains
  publication-title: J. Microbiol. Biotechnol.
  doi: 10.4014/jmb.1308.08052
– year: 2023
  ident: CR15
  article-title: Optimized pulse-feeding fed-batch fermentation for enhanced lignin to polyhydroxyalkanoate transformation
  publication-title: Biotechnol. Prog.
  doi: 10.1002/btpr.3302
– volume: 10
  start-page: 190
  issue: 2
  year: 2014
  end-page: 202
  ident: CR3
  article-title: Metabolite profiles of polyhydroxyalkanoate-producing H16
  publication-title: Metabolomics
  doi: 10.1007/s11306-013-0567-0
– volume: 61
  start-page: 11
  year: 2020
  end-page: 23
  ident: CR12
  article-title: Metabolic engineering of r H16 for improved chemoautotrophic growth and PHB production under oxygen-limiting conditions
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2020.04.009
– volume: 49
  start-page: 6254
  issue: 36
  year: 2010
  end-page: 6257
  ident: CR1
  article-title: State-of-the-art catalysts for hydrogenation of carbon dioxide
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201000533
– volume: 85
  start-page: 12
  year: 2019
  end-page: 18
  ident: CR18
  article-title: Polyhydroxybutyrate (PHB) production by from sugarcane vinasse and molasses as mixed substrate
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2019.07.007
– volume: 69
  start-page: 27
  issue: 1
  year: 2006
  end-page: 35
  ident: CR20
  article-title: Staining and quantification of poly-3-hydroxybutyrate in and cell populations using automated flow cytometry
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.20197
– volume: 6
  start-page: 89
  issue: 4
  year: 2019
  ident: CR24
  article-title: Development of high cell density cultivation strategies for Improved medium chain length polyhydroxyalkanoate productivity using LS46
  publication-title: Bioengineering
  doi: 10.3390/bioengineering6040089
– volume: 81
  start-page: 615
  issue: 4
  year: 2008
  end-page: 628
  ident: CR9
  article-title: Strategies for PHA production by mixed cultures and renewable waste materials
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-008-1757-y
– volume: 30
  start-page: 1243
  issue: 5
  year: 2014
  end-page: 1246
  ident: CR26
  article-title: Pulsed feeding strategy is more favorable to medium-chain-length polyhydroxyalkanoates production from waste rapeseed oil
  publication-title: Biotechnol. Prog.
  doi: 10.1002/btpr.1914
– volume: 21
  start-page: 231
  issue: 1
  year: 2022
  ident: 2330_CR11
  publication-title: Microb. Cell Fact.
  doi: 10.1186/s12934-022-01962-7
– volume: 11
  start-page: 11638
  issue: 24
  year: 2021
  ident: 2330_CR16
  publication-title: Appl. Sci.
  doi: 10.3390/app112411638
– volume: 24
  start-page: 59
  issue: 1
  year: 2014
  ident: 2330_CR27
  publication-title: J. Microbiol. Biotechnol.
  doi: 10.4014/jmb.1308.08052
– volume: 8
  issue: 3
  year: 2022
  ident: 2330_CR8
  publication-title: Fermentation
  doi: 10.3390/fermentation8030125
– volume: 10
  start-page: 190
  issue: 2
  year: 2014
  ident: 2330_CR3
  publication-title: Metabolomics
  doi: 10.1007/s11306-013-0567-0
– volume: 18
  start-page: 20
  issue: 1
  year: 2017
  ident: 2330_CR19
  publication-title: Eng. Life Sci.
  doi: 10.1002/elsc.201700102
– volume: 81
  start-page: 615
  issue: 4
  year: 2008
  ident: 2330_CR9
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-008-1757-y
– year: 2022
  ident: 2330_CR6
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2022.946085
– volume: 6
  start-page: 5933
  issue: 1
  year: 2015
  ident: 2330_CR5
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6933
– volume: 18
  start-page: 20
  year: 2018
  ident: 2330_CR21
  publication-title: Eng. Life Sci.
  doi: 10.1002/elsc.201700102
– volume: 34
  start-page: 89
  issue: 7
  year: 2018
  ident: 2330_CR4
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-018-2473-0
– volume: 61
  start-page: 11
  year: 2020
  ident: 2330_CR12
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2020.04.009
– volume: 2
  start-page: 2583
  year: 2018
  ident: 2330_CR14
  publication-title: Sustain. Energy Fuels
  doi: 10.1039/C8SE00281A
– volume: 87
  start-page: 2037
  year: 2010
  ident: 2330_CR28
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-010-2699-8
– volume: 26
  start-page: 2459
  issue: 6
  year: 2018
  ident: 2330_CR25
  publication-title: J. Polym. Environ.
  doi: 10.1007/s10924-017-1140-0
– volume: 6
  start-page: 89
  issue: 4
  year: 2019
  ident: 2330_CR24
  publication-title: Bioengineering
  doi: 10.3390/bioengineering6040089
– volume: 85
  start-page: 12
  year: 2019
  ident: 2330_CR18
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2019.07.007
– volume: 180
  start-page: 1586
  issue: 8
  year: 2016
  ident: 2330_CR22
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-016-2189-2
– volume: 14
  start-page: 9
  issue: 1
  year: 2018
  ident: 2330_CR7
  publication-title: Metabolomics
  doi: 10.1007/s11306-017-1302-z
– volume: 12
  issue: 7
  year: 2020
  ident: 2330_CR17
  publication-title: Polymers
  doi: 10.3390/polym12071496
– volume: 49
  start-page: 6254
  issue: 36
  year: 2010
  ident: 2330_CR1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201000533
– volume: 30
  start-page: 1243
  issue: 5
  year: 2014
  ident: 2330_CR26
  publication-title: Biotechnol. Prog.
  doi: 10.1002/btpr.1914
– year: 2023
  ident: 2330_CR15
  publication-title: Biotechnol. Prog.
  doi: 10.1002/btpr.3302
– volume: 8
  year: 2017
  ident: 2330_CR13
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14724
– volume: 6
  start-page: 49
  issue: 1
  year: 2019
  ident: 2330_CR23
  publication-title: Bioresour. Bioprocess.
  doi: 10.1186/s40643-019-0282-4
– year: 2017
  ident: 2330_CR2
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201700081
– volume: 299
  year: 2020
  ident: 2330_CR10
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.122676
– volume: 69
  start-page: 27
  issue: 1
  year: 2006
  ident: 2330_CR20
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.20197
SSID ssj0002118237
Score 2.320526
Snippet Purpose Herein, we examined C. necator for its production of bioplastic under mixotrophic fermentation. The mixotrophic process utilized dual carbon sources of...
PurposeHerein, we examined C. necator for its production of bioplastic under mixotrophic fermentation. The mixotrophic process utilized dual carbon sources of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2857
SubjectTerms Aeration
Batch culture
Bioplastics
Carbon
Carbon dioxide
Carbon sources
Climate change
Climate change mitigation
Design of experiments
Design optimization
Engineering
Environment
Environmental Engineering/Biotechnology
Experimental design
Fermentation
Glucose
Industrial Pollution Prevention
Original Paper
Production methods
Renewable and Green Energy
Substrates
Waste Management/Waste Technology
Title Optimizing Bioplastic Production of C. necator Under Mixotrophic Fermentation with CO2 and Glucose
URI https://link.springer.com/article/10.1007/s12649-023-02330-1
https://www.proquest.com/docview/3041898166
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA_iLnoQP3E6Rw7etNKkWZsc59gHypwHB_NUmibBgbZjqyD-9b70Y1VRwUMPpa85vJfk_d43Quck4MZVBqyTmFGHBbFxhI6kA9jei7ghJs6dOeM7fzRlN7POrCwKW1XZ7lVIMr-p62I30N3CAR1jH891wOZpdMB2t4lcU9pde1aoxcx5s0zCg8CmcJGyWubnZb5qpBpmfouM5gpnsIt2SqSIu4Vo99CGTvbR9qf-gQdITuDAv8zf4QVfz9MFIGEgxvdFF1fgOE4N7l3hRMfWtsb5kCM8nr-l2TJdPAHpAC7msvoowdYni3sTiqNE4WGRy36IpoP-Q2_klEMTnBiwVOZw7hGiaBALY2eZB2A5W8xlKNWaCK0UpZHyPcUAFwVWvUvFjJauFDxS1HDvCG0maaKPEea-LxiNOdEdw3zNeARsDaQSKpJCcbeJSMW4MC47itvBFs9h3QvZMjsERoc5s0PSRBfrfxZFP40_qVuVPMLybK1Cz2WECxvvbKLLSkb1599XO_kf-Snagt3FiuzGFtrMlq_6DBBIJtuo0R0-3vbb-cb7ANNx0U8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsQwEB1xFECBOMVyuoAKgmLHJHZBAQvLcixQsBJdSGJbrATJChZxfA8fyjgHCwiQKChSRBlb0YzteTOeA2CVBsK4yqB1knDm8CAxjtRR7CC29yJhqElyZ07r1G-2-dHl1uUAvFa5MHm0e3UlmZ_U_WQ31N3SQR1jH891aBlKeayfH9FQu98-3EOprjHW2L-oN52yl4CTIMToOUJ4lCoWJNLYFt8BGpQWihjGtKZSK8VYpHxPcYQLgdV6seJGx24sRaSYER7OOwjDCD6E3TtttvPuyWEWo-fFOakIAhsyRsvsnO9_-7MG7MPaLzexuYJrTMB4iUzJTrGUJmFAp1Mw9qFe4TTEZ3jA3HZe8IXsdrIuIm8kJudF1ViUMMkMqW-SVCfWlid5UyXS6jxlvbuse42kDVQEZbZTSqwPmNTPGIlSRQ6K2PkZaP8LY2dhKM1SPQdE-L7kLBFUbxnuay4iZGsQK6miWCrh1oBWjAuTsoK5baRxE_ZrL1tmh8joMGd2SGuw_j6mW9Tv-JV6sZJHWO7l-9BzORXS3q_WYKOSUf_zz7PN_418BUaaF62T8OTw9HgBRhmipyKychGGencPegnRTy9ezhcfgav_Xu1vwGoMRw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV05T-wwEB5xSAgKxCmW08V7FQRix5vYBQUsLNfjKFiJLiSxLVaCZAVBHL-Kn8g4BwsIkF5BkSLKxIpm7Mw39sw3AH9oIIyrDEYnCWcODxLjSB3FDmJ7LxKGmqTYzDk-8fc7_PCieTEAL3UtTJHtXh9JljUNlqUpzTd6ymz0C9_Qj0sH_Y29PNehVVrlkX56wKDtbvNgBy38l7H27nlr36n6CjgJwo3cEcKjVLEgkca2-w4wuLSwxDCmNZVaKcYi5XuKI3QIrAeMFTc6dmMpIsWM8HDcQRjmtvoYV1CHbb3t6jCL1wuiTiqCwKaP0apS5-vP_ugN-xD306ls4ezaEzBeoVSyVU6rSRjQ6RSMveMunIb4FH82N91nvCHb3ayHKByFyVnJIIvWJpkhrXWS6sTG9aRosESOu49Zfpv1rlC0jU6hqnxKid0PJq1TRqJUkb0yj34GOr-i2FkYSrNUzwERvi85SwTVTcN9zUWEag1iJVUUSyXcBtBacWFSsZnbphrXYZ-H2So7REWHhbJD2oDVt3d6JZfHj9KLtT3Cal3fhZ7LqZD2rLUBa7WN-o-_H23-_8RXYORspx3-Ozg5WoBRhkCqTLJchKH89l4vIRDK4-Vi7hG4_O3J_gqv7hB6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Bioplastic+Production+of+C.+necator+Under+Mixotrophic+Fermentation+with+CO2+and+Glucose&rft.jtitle=Waste+and+biomass+valorization&rft.au=Unaha%2C+Dueanchai&rft.au=Jaihao%2C+Pongpipat&rft.au=Unrean%2C+Pornkamol&rft.au=Champreda%2C+Verawat&rft.date=2024-05-01&rft.pub=Springer+Netherlands&rft.issn=1877-2641&rft.eissn=1877-265X&rft.volume=15&rft.issue=5&rft.spage=2857&rft.epage=2867&rft_id=info:doi/10.1007%2Fs12649-023-02330-1&rft.externalDocID=10_1007_s12649_023_02330_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-2641&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-2641&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-2641&client=summon