Arterial Distension Monitoring Scheme Using FPGA-Based Inference Machine in Ultrasound Scanner Circuit System
This paper presents an arterial distension monitoring scheme using a field-programmable gate array (FPGA)-based inference machine in an ultrasound scanner circuit system. An arterial distension monitoring requires a precise positioning of an ultrasound probe on an artery as a prerequisite. The propo...
Saved in:
Published in | IEEE transactions on biomedical circuits and systems Vol. 18; no. 3; pp. 702 - 713 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1932-4545 1940-9990 1940-9990 |
DOI | 10.1109/TBCAS.2024.3363134 |
Cover
Loading…
Abstract | This paper presents an arterial distension monitoring scheme using a field-programmable gate array (FPGA)-based inference machine in an ultrasound scanner circuit system. An arterial distension monitoring requires a precise positioning of an ultrasound probe on an artery as a prerequisite. The proposed arterial distension monitoring scheme is based on a finite state machine that incorporates sequential support vector machines (SVMs) to assist in both coarse and fine adjustments of probe position. The SVMs sequentially perform recognitions of ultrasonic A-mode echo pattern for a human carotid artery. By employing sequential SVMs in combination with convolution and average pooling, the number of features for the inference machine is significantly reduced, resulting in less utilization of hardware resources in FPGA. The proposed arterial distension monitoring scheme was implemented in an FPGA (Artix7) with a resource utilization percentage less than 9.3%. To demonstrate the proposed scheme, we implemented a customized ultrasound scanner consisting of a single-element transducer, an FPGA, and analog interface circuits with discrete chips. In measurements, we set virtual coordinates on a human neck for 9 human subjects. The achieved accuracy of probe positioning inference is 88%, and the Pearson coefficient (r) of arterial distension estimation is 0.838. |
---|---|
AbstractList | This paper presents an arterial distension monitoring scheme using a field-programmable gate array (FPGA)-based inference machine in an ultrasound scanner circuit system. An arterial distension monitoring requires a precise positioning of an ultrasound probe on an artery as a prerequisite. The proposed arterial distension monitoring scheme is based on a finite state machine that incorporates sequential support vector machines (SVMs) to assist in both coarse and fine adjustments of probe position. The SVMs sequentially perform recognitions of ultrasonic A-mode echo pattern for a human carotid artery. By employing sequential SVMs in combination with convolution and average pooling, the number of features for the inference machine is significantly reduced, resulting in less utilization of hardware resources in FPGA. The proposed arterial distension monitoring scheme was implemented in an FPGA (Artix7) with a resource utilization percentage less than 9.3%. To demonstrate the proposed scheme, we implemented a customized ultrasound scanner consisting of a single-element transducer, an FPGA, and analog interface circuits with discrete chips. In measurements, we set virtual coordinates on a human neck for 9 human subjects. The achieved accuracy of probe positioning inference is 88%, and the Pearson coefficient (r) of arterial distension estimation is 0.838. This paper presents an arterial distension monitoring scheme using a field-programmable gate array (FPGA)-based inference machine in an ultrasound scanner circuit system. An arterial distension monitoring requires a precise positioning of an ultrasound probe on an artery as a prerequisite. The proposed arterial distension monitoring scheme is based on a finite state machine that incorporates sequential support vector machines (SVMs) to assist in both coarse and fine adjustments of probe position. The SVMs sequentially perform recognitions of ultrasonic A-mode echo pattern for a human carotid artery. By employing sequential SVMs in combination with convolution and average pooling, the number of features for the inference machine is significantly reduced, resulting in less utilization of hardware resources in FPGA. The proposed arterial distension monitoring scheme was implemented in an FPGA (Artix7) with a resource utilization percentage less than 9.3%. To demonstrate the proposed scheme, we implemented a customized ultrasound scanner consisting of a single-element transducer, an FPGA, and analog interface circuits with discrete chips. In measurements, we set virtual coordinates on a human neck for 9 human subjects. The achieved accuracy of probe positioning inference is 88%, and the Pearson coefficient (r) of arterial distension estimation is 0.838.This paper presents an arterial distension monitoring scheme using a field-programmable gate array (FPGA)-based inference machine in an ultrasound scanner circuit system. An arterial distension monitoring requires a precise positioning of an ultrasound probe on an artery as a prerequisite. The proposed arterial distension monitoring scheme is based on a finite state machine that incorporates sequential support vector machines (SVMs) to assist in both coarse and fine adjustments of probe position. The SVMs sequentially perform recognitions of ultrasonic A-mode echo pattern for a human carotid artery. By employing sequential SVMs in combination with convolution and average pooling, the number of features for the inference machine is significantly reduced, resulting in less utilization of hardware resources in FPGA. The proposed arterial distension monitoring scheme was implemented in an FPGA (Artix7) with a resource utilization percentage less than 9.3%. To demonstrate the proposed scheme, we implemented a customized ultrasound scanner consisting of a single-element transducer, an FPGA, and analog interface circuits with discrete chips. In measurements, we set virtual coordinates on a human neck for 9 human subjects. The achieved accuracy of probe positioning inference is 88%, and the Pearson coefficient (r) of arterial distension estimation is 0.838. |
Author | Yang, Se-Hwan Ko, Doo-Hyeon Lee, Young-Chan Um, Ji-Yong Son, Min-Hyeong |
Author_xml | – sequence: 1 givenname: Young-Chan orcidid: 0009-0008-8442-2345 surname: Lee fullname: Lee, Young-Chan organization: Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea – sequence: 2 givenname: Doo-Hyeon orcidid: 0000-0002-2315-9503 surname: Ko fullname: Ko, Doo-Hyeon organization: Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea – sequence: 3 givenname: Min-Hyeong surname: Son fullname: Son, Min-Hyeong organization: Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea – sequence: 4 givenname: Se-Hwan surname: Yang fullname: Yang, Se-Hwan organization: Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea – sequence: 5 givenname: Ji-Yong orcidid: 0000-0002-0180-0400 surname: Um fullname: Um, Ji-Yong email: jyum@kumoh.ac.kr organization: Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38324435$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1O3DAUha0KVH7aF6iqylI3bDLYvo4TL4dpoUggKg2zthznphglDrWTBW9fDzNIFQtW_tH3XVvnnJCDMAYk5AtnC86ZPr-_WC3XC8GEXAAo4CA_kGOuJSu01uxguwdRyFKWR-QkpUfGSiW0-EiOoAYhJZTHZFjGCaO3Pf3h04Qh-THQ2zH4aYw-_KFr94AD0k3aHi5_Xy2LC5uwpdehw4jBIb217sEHpD7QTT9Fm8Y5tNmzIWCkKx_d7Ce6fs7Th0_ksLN9ws_79ZRsLn_er34VN3dX16vlTeGgFFNRQ4MtMmmVU2XjrLOVVrxuayax4aBZg3UHCpljnOcLZSshVSfBVk4pUcIpOdvNfYrj3xnTZAafHPa9DTjOyeQUQHOopM7o9zfo4zjHkH9ngCkuyzq_kalve2puBmzNU_SDjc_mNcgM1DvAxTGliJ1xfrJTTjNH4nvDmdl2Zl46M9vOzL6zrIo36uv0d6WvO8kj4n-CFFBXAv4BepuhDw |
CODEN | ITBCCW |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3506334 |
Cites_doi | 10.1109/ISSCC42613.2021.9365808 10.1109/JTEHM.2015.2431471 10.1049/ell2.12832 10.1109/JSSC.2017.2728787 10.1109/TBME.2015.2441951 10.1038/s41598-022-27170-2 10.1016/j.bspc.2022.103968 10.1109/JSSC.2022.3201758 10.1109/TCSII.2022.3148228 10.1109/MWSCAS.2017.8052890 10.1186/s12938-016-0302-y 10.1109/EMBC.2014.6943996 10.1109/TUFFC.2021.3109117 10.1109/EMBC.2012.6345911 10.1016/j.ultrasmedbio.2011.01.020 10.1109/TBCAS.2015.2394468 10.1109/TBCAS.2023.3254453 10.1109/TBME.2018.2866332 10.1109/ACCESS.2023.3244608 10.1109/TUFFC.2014.006904 10.1016/j.bspc.2020.101870 10.1109/JSSC.2018.2864295 10.1109/EMBC.2014.6944086 10.1109/MWSCAS54063.2022.9859349 10.1109/EMBC.2013.6610390 10.1109/TBCAS.2021.3113665 10.1126/sciadv.abi9283 10.23915/distill.00021 10.1115/1.4030873 10.1109/TBCAS.2020.2979514 10.1007/PL00007261 10.1109/JSEN.2022.3228517 10.1109/TBCAS.2019.2946661 10.1109/JSSC.2019.2939077 10.1126/sciadv.adh5325 10.1038/s41551-018-0287-x |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SP 7TB 8FD FR3 L7M P64 7X8 |
DOI | 10.1109/TBCAS.2024.3363134 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Biotechnology Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1940-9990 |
EndPage | 713 |
ExternalDocumentID | 38324435 10_1109_TBCAS_2024_3363134 10423872 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Commercialization Promotion Agency for R&D Outcomes funded by Korea Government (MSIT) grantid: 2021I100 – fundername: Korea Institute for Advancement of Technology funded by the Korea Government (MOTIE) grantid: P0017011 – fundername: National Research Foundation grantid: 2019R1I1A3A01060591; RS-2023-00244635 funderid: 10.13039/501100001321 |
GroupedDBID | --- 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QO 7SP 7TB 8FD FR3 L7M P64 7X8 |
ID | FETCH-LOGICAL-c352t-83bede04a6c65bcaca79618d804eb1390be8f36e0c011b136a7246f43a7c66253 |
IEDL.DBID | RIE |
ISSN | 1932-4545 1940-9990 |
IngestDate | Fri Jul 11 15:43:03 EDT 2025 Mon Jun 30 08:37:39 EDT 2025 Thu Apr 03 07:03:44 EDT 2025 Tue Jul 01 03:26:39 EDT 2025 Thu Apr 24 23:11:14 EDT 2025 Wed Aug 27 02:03:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-83bede04a6c65bcaca79618d804eb1390be8f36e0c011b136a7246f43a7c66253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2315-9503 0009-0008-8442-2345 0000-0002-0180-0400 |
PMID | 38324435 |
PQID | 3061458011 |
PQPubID | 85510 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1109_TBCAS_2024_3363134 proquest_miscellaneous_2923913749 ieee_primary_10423872 proquest_journals_3061458011 crossref_primary_10_1109_TBCAS_2024_3363134 pubmed_primary_38324435 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical circuits and systems |
PublicationTitleAbbrev | TBCAS |
PublicationTitleAlternate | IEEE Trans Biomed Circuits Syst |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 (ref33) 2024 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref20 doi: 10.1109/ISSCC42613.2021.9365808 – ident: ref26 doi: 10.1109/JTEHM.2015.2431471 – ident: ref27 doi: 10.1049/ell2.12832 – ident: ref28 doi: 10.1109/JSSC.2017.2728787 – ident: ref13 doi: 10.1109/TBME.2015.2441951 – ident: ref10 doi: 10.1038/s41598-022-27170-2 – year: 2024 ident: ref33 article-title: Arterial distension monitoring scheme using FPGA – ident: ref9 doi: 10.1016/j.bspc.2022.103968 – ident: ref21 doi: 10.1109/JSSC.2022.3201758 – ident: ref30 doi: 10.1109/TCSII.2022.3148228 – ident: ref31 doi: 10.1109/MWSCAS.2017.8052890 – ident: ref11 doi: 10.1186/s12938-016-0302-y – ident: ref24 doi: 10.1109/EMBC.2014.6943996 – ident: ref19 doi: 10.1109/TUFFC.2021.3109117 – ident: ref23 doi: 10.1109/EMBC.2012.6345911 – ident: ref15 doi: 10.1016/j.ultrasmedbio.2011.01.020 – ident: ref18 doi: 10.1109/TBCAS.2015.2394468 – ident: ref1 doi: 10.1109/TBCAS.2023.3254453 – ident: ref17 doi: 10.1109/TBME.2018.2866332 – ident: ref36 doi: 10.1109/ACCESS.2023.3244608 – ident: ref16 doi: 10.1109/TUFFC.2014.006904 – ident: ref12 doi: 10.1016/j.bspc.2020.101870 – ident: ref22 doi: 10.1109/JSSC.2018.2864295 – ident: ref25 doi: 10.1109/EMBC.2014.6944086 – ident: ref32 doi: 10.1109/MWSCAS54063.2022.9859349 – ident: ref37 doi: 10.1109/EMBC.2013.6610390 – ident: ref29 doi: 10.1109/TBCAS.2021.3113665 – ident: ref8 doi: 10.1126/sciadv.abi9283 – ident: ref35 doi: 10.23915/distill.00021 – ident: ref34 doi: 10.1115/1.4030873 – ident: ref3 doi: 10.1109/TBCAS.2020.2979514 – ident: ref14 doi: 10.1007/PL00007261 – ident: ref2 doi: 10.1109/JSEN.2022.3228517 – ident: ref4 doi: 10.1109/TBCAS.2019.2946661 – ident: ref5 doi: 10.1109/JSSC.2019.2939077 – ident: ref7 doi: 10.1126/sciadv.adh5325 – ident: ref6 doi: 10.1038/s41551-018-0287-x |
SSID | ssj0056292 |
Score | 2.3670022 |
Snippet | This paper presents an arterial distension monitoring scheme using a field-programmable gate array (FPGA)-based inference machine in an ultrasound scanner... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 702 |
SubjectTerms | Analog circuits Arterial distension monitoring Biomedical monitoring Blood pressure Carotid arteries Carotid Arteries - diagnostic imaging Carotid Arteries - physiology Carotid artery Distension field programmable gate array (FPGA) Field programmable gate arrays Finite state machines Humans Image Processing, Computer-Assisted - methods Inference Monitoring Probes Resource utilization Scanners sequential support vector machine (SVM) Signal Processing, Computer-Assisted - instrumentation Support Vector Machine Support vector machines Ultrasonic imaging Ultrasonic scanners Ultrasonography - instrumentation Ultrasonography - methods Ultrasound ultrasound probe positioning ultrasound scanner |
Title | Arterial Distension Monitoring Scheme Using FPGA-Based Inference Machine in Ultrasound Scanner Circuit System |
URI | https://ieeexplore.ieee.org/document/10423872 https://www.ncbi.nlm.nih.gov/pubmed/38324435 https://www.proquest.com/docview/3061458011 https://www.proquest.com/docview/2923913749 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BT3DgWSBQkJG4oSzO2nGS43ZhKUitkNqVeots70Ratc2i3eTCr2fGTpYKqYhblNh5aL7xzMQz8wF8qKx2U9U0qZRIAYr2PrWycSlhRZGe29KHlvmnZ-Zkqb9f5pdDsXqohUHEkHyGEz4Me_mrje_5VxlpOBn_sqAV9z5FbrFYa1x2yY4HBmR2SLiRdz5WyMjq08XxfHZOseBUT5QyKlPMxkOhGZm2QPP2xyAFhpW7nc1gdBaP4Wx83ZhrcjXpOzfxv_7q5Pjf3_MEHg3up5hFvDyFe9g-g4e3mhI-h5sZZ3kSLMVnhkDLv9NEVH0eIM5JzDcoQq6BWPz4OkuPyRKuxLexdFCchgRNFOtWLK-7rd0xdRPNs0zzJebrre_XnYi90g9hufhyMT9JB1KG1JOv1qWlcrhCqa3xJneexFkwacyqlJqWfVVJh2WjDEpPKwedMLaYatNoZQtvKNhSL-Cg3bT4CoTKq2nu8kaVBrXNtZNWVh6bstAlZhkmkI2Sqf3QsZyJM67rELnIqg6CrVmw9SDYBD7u5_yM_Tr-OfqQpXJrZBRIAkcjAupBp3e14uA5J4ueJfB-f5m0kbdYbIubflcTBlWVqUJXCbyMyNnffATc6zse-gYe8LvFPLQjOOi2Pb4lj6dz7wLSfwOut_jC |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfQeAAe-BwjY4CReEMpTm3n47ErlA7WCmmttDfLcS9SxZaiNnnZX8-dnZQJaYi3KLHzofud7y6-ux9jHwqryqGsqlgIwABFORdbUZUxYkWintvc-Zb5s3k6Xapvl_qyK1b3tTAA4JPPYECHfi9_tXEt_SpDDUfjn2e44t7XVI0byrX6hRctuedAJpeEWnnrvkZGFJ8Wp-PRBUaDQzWQMpWJJD4eDM7QuHmitz8myXOs3O1uerMzecLm_QuHbJOfg7YpB-7mr16O__1FT9njzgHlo4CYZ-we1M_Zo1ttCV-w6xHleSIw-WcCQU0_1HhQfhrAL1DQ18B9tgGf_Pg6ik_RFq74WV88yGc-RRP4uubLq2Zrd0TehPMsEX3x8Xrr2nXDQ7f0Q7acfFmMp3FHyxA79NaaOJclrEAom7pUlw4FmhFtzCoXChd-WYgS8kqmIByuHXgitdlQpZWSNnMphlvyJTuoNzW8YlzqYqhLXck8BWW1KoUVhYMqz1QOSQIRS3rJGNf1LCfqjCvjYxdRGC9YQ4I1nWAj9nE_51fo2PHP0YcklVsjg0AidtIjwHRavTOSwmeNNj2J2Pv9ZdRH2mSxNWzanUEMyiKRmSoidhSQs795D7jjOx76jj2YLmbn5vxs_v01e0jvGbLSTthBs23hDfo_TfnWo_43zRn8Cg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arterial+Distension+Monitoring+Scheme+Using+FPGA-Based+Inference+Machine+in+Ultrasound+Scanner+Circuit+System&rft.jtitle=IEEE+transactions+on+biomedical+circuits+and+systems&rft.au=Lee%2C+Young-Chan&rft.au=Ko%2C+Doo-Hyeon&rft.au=Son%2C+Min-Hyeong&rft.au=Yang%2C+Se-Hwan&rft.date=2024-06-01&rft.issn=1932-4545&rft.eissn=1940-9990&rft.volume=18&rft.issue=3&rft.spage=702&rft.epage=713&rft_id=info:doi/10.1109%2FTBCAS.2024.3363134&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBCAS_2024_3363134 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4545&client=summon |