Arterial Distension Monitoring Scheme Using FPGA-Based Inference Machine in Ultrasound Scanner Circuit System

This paper presents an arterial distension monitoring scheme using a field-programmable gate array (FPGA)-based inference machine in an ultrasound scanner circuit system. An arterial distension monitoring requires a precise positioning of an ultrasound probe on an artery as a prerequisite. The propo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical circuits and systems Vol. 18; no. 3; pp. 702 - 713
Main Authors Lee, Young-Chan, Ko, Doo-Hyeon, Son, Min-Hyeong, Yang, Se-Hwan, Um, Ji-Yong
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1932-4545
1940-9990
1940-9990
DOI10.1109/TBCAS.2024.3363134

Cover

Loading…
Abstract This paper presents an arterial distension monitoring scheme using a field-programmable gate array (FPGA)-based inference machine in an ultrasound scanner circuit system. An arterial distension monitoring requires a precise positioning of an ultrasound probe on an artery as a prerequisite. The proposed arterial distension monitoring scheme is based on a finite state machine that incorporates sequential support vector machines (SVMs) to assist in both coarse and fine adjustments of probe position. The SVMs sequentially perform recognitions of ultrasonic A-mode echo pattern for a human carotid artery. By employing sequential SVMs in combination with convolution and average pooling, the number of features for the inference machine is significantly reduced, resulting in less utilization of hardware resources in FPGA. The proposed arterial distension monitoring scheme was implemented in an FPGA (Artix7) with a resource utilization percentage less than 9.3%. To demonstrate the proposed scheme, we implemented a customized ultrasound scanner consisting of a single-element transducer, an FPGA, and analog interface circuits with discrete chips. In measurements, we set virtual coordinates on a human neck for 9 human subjects. The achieved accuracy of probe positioning inference is 88%, and the Pearson coefficient (r) of arterial distension estimation is 0.838.
AbstractList This paper presents an arterial distension monitoring scheme using a field-programmable gate array (FPGA)-based inference machine in an ultrasound scanner circuit system. An arterial distension monitoring requires a precise positioning of an ultrasound probe on an artery as a prerequisite. The proposed arterial distension monitoring scheme is based on a finite state machine that incorporates sequential support vector machines (SVMs) to assist in both coarse and fine adjustments of probe position. The SVMs sequentially perform recognitions of ultrasonic A-mode echo pattern for a human carotid artery. By employing sequential SVMs in combination with convolution and average pooling, the number of features for the inference machine is significantly reduced, resulting in less utilization of hardware resources in FPGA. The proposed arterial distension monitoring scheme was implemented in an FPGA (Artix7) with a resource utilization percentage less than 9.3%. To demonstrate the proposed scheme, we implemented a customized ultrasound scanner consisting of a single-element transducer, an FPGA, and analog interface circuits with discrete chips. In measurements, we set virtual coordinates on a human neck for 9 human subjects. The achieved accuracy of probe positioning inference is 88%, and the Pearson coefficient (r) of arterial distension estimation is 0.838.
This paper presents an arterial distension monitoring scheme using a field-programmable gate array (FPGA)-based inference machine in an ultrasound scanner circuit system. An arterial distension monitoring requires a precise positioning of an ultrasound probe on an artery as a prerequisite. The proposed arterial distension monitoring scheme is based on a finite state machine that incorporates sequential support vector machines (SVMs) to assist in both coarse and fine adjustments of probe position. The SVMs sequentially perform recognitions of ultrasonic A-mode echo pattern for a human carotid artery. By employing sequential SVMs in combination with convolution and average pooling, the number of features for the inference machine is significantly reduced, resulting in less utilization of hardware resources in FPGA. The proposed arterial distension monitoring scheme was implemented in an FPGA (Artix7) with a resource utilization percentage less than 9.3%. To demonstrate the proposed scheme, we implemented a customized ultrasound scanner consisting of a single-element transducer, an FPGA, and analog interface circuits with discrete chips. In measurements, we set virtual coordinates on a human neck for 9 human subjects. The achieved accuracy of probe positioning inference is 88%, and the Pearson coefficient (r) of arterial distension estimation is 0.838.This paper presents an arterial distension monitoring scheme using a field-programmable gate array (FPGA)-based inference machine in an ultrasound scanner circuit system. An arterial distension monitoring requires a precise positioning of an ultrasound probe on an artery as a prerequisite. The proposed arterial distension monitoring scheme is based on a finite state machine that incorporates sequential support vector machines (SVMs) to assist in both coarse and fine adjustments of probe position. The SVMs sequentially perform recognitions of ultrasonic A-mode echo pattern for a human carotid artery. By employing sequential SVMs in combination with convolution and average pooling, the number of features for the inference machine is significantly reduced, resulting in less utilization of hardware resources in FPGA. The proposed arterial distension monitoring scheme was implemented in an FPGA (Artix7) with a resource utilization percentage less than 9.3%. To demonstrate the proposed scheme, we implemented a customized ultrasound scanner consisting of a single-element transducer, an FPGA, and analog interface circuits with discrete chips. In measurements, we set virtual coordinates on a human neck for 9 human subjects. The achieved accuracy of probe positioning inference is 88%, and the Pearson coefficient (r) of arterial distension estimation is 0.838.
Author Yang, Se-Hwan
Ko, Doo-Hyeon
Lee, Young-Chan
Um, Ji-Yong
Son, Min-Hyeong
Author_xml – sequence: 1
  givenname: Young-Chan
  orcidid: 0009-0008-8442-2345
  surname: Lee
  fullname: Lee, Young-Chan
  organization: Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
– sequence: 2
  givenname: Doo-Hyeon
  orcidid: 0000-0002-2315-9503
  surname: Ko
  fullname: Ko, Doo-Hyeon
  organization: Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
– sequence: 3
  givenname: Min-Hyeong
  surname: Son
  fullname: Son, Min-Hyeong
  organization: Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
– sequence: 4
  givenname: Se-Hwan
  surname: Yang
  fullname: Yang, Se-Hwan
  organization: Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
– sequence: 5
  givenname: Ji-Yong
  orcidid: 0000-0002-0180-0400
  surname: Um
  fullname: Um, Ji-Yong
  email: jyum@kumoh.ac.kr
  organization: Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38324435$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1O3DAUha0KVH7aF6iqylI3bDLYvo4TL4dpoUggKg2zthznphglDrWTBW9fDzNIFQtW_tH3XVvnnJCDMAYk5AtnC86ZPr-_WC3XC8GEXAAo4CA_kGOuJSu01uxguwdRyFKWR-QkpUfGSiW0-EiOoAYhJZTHZFjGCaO3Pf3h04Qh-THQ2zH4aYw-_KFr94AD0k3aHi5_Xy2LC5uwpdehw4jBIb217sEHpD7QTT9Fm8Y5tNmzIWCkKx_d7Ce6fs7Th0_ksLN9ws_79ZRsLn_er34VN3dX16vlTeGgFFNRQ4MtMmmVU2XjrLOVVrxuayax4aBZg3UHCpljnOcLZSshVSfBVk4pUcIpOdvNfYrj3xnTZAafHPa9DTjOyeQUQHOopM7o9zfo4zjHkH9ngCkuyzq_kalve2puBmzNU_SDjc_mNcgM1DvAxTGliJ1xfrJTTjNH4nvDmdl2Zl46M9vOzL6zrIo36uv0d6WvO8kj4n-CFFBXAv4BepuhDw
CODEN ITBCCW
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3506334
Cites_doi 10.1109/ISSCC42613.2021.9365808
10.1109/JTEHM.2015.2431471
10.1049/ell2.12832
10.1109/JSSC.2017.2728787
10.1109/TBME.2015.2441951
10.1038/s41598-022-27170-2
10.1016/j.bspc.2022.103968
10.1109/JSSC.2022.3201758
10.1109/TCSII.2022.3148228
10.1109/MWSCAS.2017.8052890
10.1186/s12938-016-0302-y
10.1109/EMBC.2014.6943996
10.1109/TUFFC.2021.3109117
10.1109/EMBC.2012.6345911
10.1016/j.ultrasmedbio.2011.01.020
10.1109/TBCAS.2015.2394468
10.1109/TBCAS.2023.3254453
10.1109/TBME.2018.2866332
10.1109/ACCESS.2023.3244608
10.1109/TUFFC.2014.006904
10.1016/j.bspc.2020.101870
10.1109/JSSC.2018.2864295
10.1109/EMBC.2014.6944086
10.1109/MWSCAS54063.2022.9859349
10.1109/EMBC.2013.6610390
10.1109/TBCAS.2021.3113665
10.1126/sciadv.abi9283
10.23915/distill.00021
10.1115/1.4030873
10.1109/TBCAS.2020.2979514
10.1007/PL00007261
10.1109/JSEN.2022.3228517
10.1109/TBCAS.2019.2946661
10.1109/JSSC.2019.2939077
10.1126/sciadv.adh5325
10.1038/s41551-018-0287-x
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SP
7TB
8FD
FR3
L7M
P64
7X8
DOI 10.1109/TBCAS.2024.3363134
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Biotechnology Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1940-9990
EndPage 713
ExternalDocumentID 38324435
10_1109_TBCAS_2024_3363134
10423872
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Commercialization Promotion Agency for R&D Outcomes funded by Korea Government (MSIT)
  grantid: 2021I100
– fundername: Korea Institute for Advancement of Technology funded by the Korea Government (MOTIE)
  grantid: P0017011
– fundername: National Research Foundation
  grantid: 2019R1I1A3A01060591; RS-2023-00244635
  funderid: 10.13039/501100001321
GroupedDBID ---
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SP
7TB
8FD
FR3
L7M
P64
7X8
ID FETCH-LOGICAL-c352t-83bede04a6c65bcaca79618d804eb1390be8f36e0c011b136a7246f43a7c66253
IEDL.DBID RIE
ISSN 1932-4545
1940-9990
IngestDate Fri Jul 11 15:43:03 EDT 2025
Mon Jun 30 08:37:39 EDT 2025
Thu Apr 03 07:03:44 EDT 2025
Tue Jul 01 03:26:39 EDT 2025
Thu Apr 24 23:11:14 EDT 2025
Wed Aug 27 02:03:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-83bede04a6c65bcaca79618d804eb1390be8f36e0c011b136a7246f43a7c66253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2315-9503
0009-0008-8442-2345
0000-0002-0180-0400
PMID 38324435
PQID 3061458011
PQPubID 85510
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TBCAS_2024_3363134
proquest_miscellaneous_2923913749
ieee_primary_10423872
proquest_journals_3061458011
crossref_primary_10_1109_TBCAS_2024_3363134
pubmed_primary_38324435
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical circuits and systems
PublicationTitleAbbrev TBCAS
PublicationTitleAlternate IEEE Trans Biomed Circuits Syst
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
(ref33) 2024
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref20
  doi: 10.1109/ISSCC42613.2021.9365808
– ident: ref26
  doi: 10.1109/JTEHM.2015.2431471
– ident: ref27
  doi: 10.1049/ell2.12832
– ident: ref28
  doi: 10.1109/JSSC.2017.2728787
– ident: ref13
  doi: 10.1109/TBME.2015.2441951
– ident: ref10
  doi: 10.1038/s41598-022-27170-2
– year: 2024
  ident: ref33
  article-title: Arterial distension monitoring scheme using FPGA
– ident: ref9
  doi: 10.1016/j.bspc.2022.103968
– ident: ref21
  doi: 10.1109/JSSC.2022.3201758
– ident: ref30
  doi: 10.1109/TCSII.2022.3148228
– ident: ref31
  doi: 10.1109/MWSCAS.2017.8052890
– ident: ref11
  doi: 10.1186/s12938-016-0302-y
– ident: ref24
  doi: 10.1109/EMBC.2014.6943996
– ident: ref19
  doi: 10.1109/TUFFC.2021.3109117
– ident: ref23
  doi: 10.1109/EMBC.2012.6345911
– ident: ref15
  doi: 10.1016/j.ultrasmedbio.2011.01.020
– ident: ref18
  doi: 10.1109/TBCAS.2015.2394468
– ident: ref1
  doi: 10.1109/TBCAS.2023.3254453
– ident: ref17
  doi: 10.1109/TBME.2018.2866332
– ident: ref36
  doi: 10.1109/ACCESS.2023.3244608
– ident: ref16
  doi: 10.1109/TUFFC.2014.006904
– ident: ref12
  doi: 10.1016/j.bspc.2020.101870
– ident: ref22
  doi: 10.1109/JSSC.2018.2864295
– ident: ref25
  doi: 10.1109/EMBC.2014.6944086
– ident: ref32
  doi: 10.1109/MWSCAS54063.2022.9859349
– ident: ref37
  doi: 10.1109/EMBC.2013.6610390
– ident: ref29
  doi: 10.1109/TBCAS.2021.3113665
– ident: ref8
  doi: 10.1126/sciadv.abi9283
– ident: ref35
  doi: 10.23915/distill.00021
– ident: ref34
  doi: 10.1115/1.4030873
– ident: ref3
  doi: 10.1109/TBCAS.2020.2979514
– ident: ref14
  doi: 10.1007/PL00007261
– ident: ref2
  doi: 10.1109/JSEN.2022.3228517
– ident: ref4
  doi: 10.1109/TBCAS.2019.2946661
– ident: ref5
  doi: 10.1109/JSSC.2019.2939077
– ident: ref7
  doi: 10.1126/sciadv.adh5325
– ident: ref6
  doi: 10.1038/s41551-018-0287-x
SSID ssj0056292
Score 2.3670022
Snippet This paper presents an arterial distension monitoring scheme using a field-programmable gate array (FPGA)-based inference machine in an ultrasound scanner...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 702
SubjectTerms Analog circuits
Arterial distension monitoring
Biomedical monitoring
Blood pressure
Carotid arteries
Carotid Arteries - diagnostic imaging
Carotid Arteries - physiology
Carotid artery
Distension
field programmable gate array (FPGA)
Field programmable gate arrays
Finite state machines
Humans
Image Processing, Computer-Assisted - methods
Inference
Monitoring
Probes
Resource utilization
Scanners
sequential support vector machine (SVM)
Signal Processing, Computer-Assisted - instrumentation
Support Vector Machine
Support vector machines
Ultrasonic imaging
Ultrasonic scanners
Ultrasonography - instrumentation
Ultrasonography - methods
Ultrasound
ultrasound probe positioning
ultrasound scanner
Title Arterial Distension Monitoring Scheme Using FPGA-Based Inference Machine in Ultrasound Scanner Circuit System
URI https://ieeexplore.ieee.org/document/10423872
https://www.ncbi.nlm.nih.gov/pubmed/38324435
https://www.proquest.com/docview/3061458011
https://www.proquest.com/docview/2923913749
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BT3DgWSBQkJG4oSzO2nGS43ZhKUitkNqVeots70Ratc2i3eTCr2fGTpYKqYhblNh5aL7xzMQz8wF8qKx2U9U0qZRIAYr2PrWycSlhRZGe29KHlvmnZ-Zkqb9f5pdDsXqohUHEkHyGEz4Me_mrje_5VxlpOBn_sqAV9z5FbrFYa1x2yY4HBmR2SLiRdz5WyMjq08XxfHZOseBUT5QyKlPMxkOhGZm2QPP2xyAFhpW7nc1gdBaP4Wx83ZhrcjXpOzfxv_7q5Pjf3_MEHg3up5hFvDyFe9g-g4e3mhI-h5sZZ3kSLMVnhkDLv9NEVH0eIM5JzDcoQq6BWPz4OkuPyRKuxLexdFCchgRNFOtWLK-7rd0xdRPNs0zzJebrre_XnYi90g9hufhyMT9JB1KG1JOv1qWlcrhCqa3xJneexFkwacyqlJqWfVVJh2WjDEpPKwedMLaYatNoZQtvKNhSL-Cg3bT4CoTKq2nu8kaVBrXNtZNWVh6bstAlZhkmkI2Sqf3QsZyJM67rELnIqg6CrVmw9SDYBD7u5_yM_Tr-OfqQpXJrZBRIAkcjAupBp3e14uA5J4ueJfB-f5m0kbdYbIubflcTBlWVqUJXCbyMyNnffATc6zse-gYe8LvFPLQjOOi2Pb4lj6dz7wLSfwOut_jC
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfQeAAe-BwjY4CReEMpTm3n47ErlA7WCmmttDfLcS9SxZaiNnnZX8-dnZQJaYi3KLHzofud7y6-ux9jHwqryqGsqlgIwABFORdbUZUxYkWintvc-Zb5s3k6Xapvl_qyK1b3tTAA4JPPYECHfi9_tXEt_SpDDUfjn2e44t7XVI0byrX6hRctuedAJpeEWnnrvkZGFJ8Wp-PRBUaDQzWQMpWJJD4eDM7QuHmitz8myXOs3O1uerMzecLm_QuHbJOfg7YpB-7mr16O__1FT9njzgHlo4CYZ-we1M_Zo1ttCV-w6xHleSIw-WcCQU0_1HhQfhrAL1DQ18B9tgGf_Pg6ik_RFq74WV88yGc-RRP4uubLq2Zrd0TehPMsEX3x8Xrr2nXDQ7f0Q7acfFmMp3FHyxA79NaaOJclrEAom7pUlw4FmhFtzCoXChd-WYgS8kqmIByuHXgitdlQpZWSNnMphlvyJTuoNzW8YlzqYqhLXck8BWW1KoUVhYMqz1QOSQIRS3rJGNf1LCfqjCvjYxdRGC9YQ4I1nWAj9nE_51fo2PHP0YcklVsjg0AidtIjwHRavTOSwmeNNj2J2Pv9ZdRH2mSxNWzanUEMyiKRmSoidhSQs795D7jjOx76jj2YLmbn5vxs_v01e0jvGbLSTthBs23hDfo_TfnWo_43zRn8Cg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arterial+Distension+Monitoring+Scheme+Using+FPGA-Based+Inference+Machine+in+Ultrasound+Scanner+Circuit+System&rft.jtitle=IEEE+transactions+on+biomedical+circuits+and+systems&rft.au=Lee%2C+Young-Chan&rft.au=Ko%2C+Doo-Hyeon&rft.au=Son%2C+Min-Hyeong&rft.au=Yang%2C+Se-Hwan&rft.date=2024-06-01&rft.issn=1932-4545&rft.eissn=1940-9990&rft.volume=18&rft.issue=3&rft.spage=702&rft.epage=713&rft_id=info:doi/10.1109%2FTBCAS.2024.3363134&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBCAS_2024_3363134
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4545&client=summon