Arterial Distension Monitoring Scheme Using FPGA-Based Inference Machine in Ultrasound Scanner Circuit System

This paper presents an arterial distension monitoring scheme using a field-programmable gate array (FPGA)-based inference machine in an ultrasound scanner circuit system. An arterial distension monitoring requires a precise positioning of an ultrasound probe on an artery as a prerequisite. The propo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical circuits and systems Vol. 18; no. 3; pp. 702 - 713
Main Authors Lee, Young-Chan, Ko, Doo-Hyeon, Son, Min-Hyeong, Yang, Se-Hwan, Um, Ji-Yong
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents an arterial distension monitoring scheme using a field-programmable gate array (FPGA)-based inference machine in an ultrasound scanner circuit system. An arterial distension monitoring requires a precise positioning of an ultrasound probe on an artery as a prerequisite. The proposed arterial distension monitoring scheme is based on a finite state machine that incorporates sequential support vector machines (SVMs) to assist in both coarse and fine adjustments of probe position. The SVMs sequentially perform recognitions of ultrasonic A-mode echo pattern for a human carotid artery. By employing sequential SVMs in combination with convolution and average pooling, the number of features for the inference machine is significantly reduced, resulting in less utilization of hardware resources in FPGA. The proposed arterial distension monitoring scheme was implemented in an FPGA (Artix7) with a resource utilization percentage less than 9.3%. To demonstrate the proposed scheme, we implemented a customized ultrasound scanner consisting of a single-element transducer, an FPGA, and analog interface circuits with discrete chips. In measurements, we set virtual coordinates on a human neck for 9 human subjects. The achieved accuracy of probe positioning inference is 88%, and the Pearson coefficient (r) of arterial distension estimation is 0.838.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1932-4545
1940-9990
1940-9990
DOI:10.1109/TBCAS.2024.3363134