Lens regeneration: scientific discoveries and clinical possibilities

In the process of exploring new methods for cataract treatment, lens regeneration is an ideal strategy for effectively restoring accommodative vision and avoiding postoperative complications and has great clinical potential. Lens regeneration, which is not a simple repetition of lens development, de...

Full description

Saved in:
Bibliographic Details
Published inMolecular biology reports Vol. 48; no. 5; pp. 4911 - 4923
Main Authors Gu, Yuzhou, Yao, Ke, Fu, Qiuli
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.05.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the process of exploring new methods for cataract treatment, lens regeneration is an ideal strategy for effectively restoring accommodative vision and avoiding postoperative complications and has great clinical potential. Lens regeneration, which is not a simple repetition of lens development, depends on the complex regulatory network comprising the FGF, BMP/TGF-β, Notch, and Wnt signaling pathways. Current research mainly focuses on in situ and in vitro lens regeneration. On the one hand, the possibility of the autologous stem cell in situ regeneration of functional lenses has been confirmed; on the other hand, both embryonic stem cells and induced pluripotent stem cells have been induced into lentoid bodies in vitro which are similar to the natural lens to a certain extent. This article will briefly summarize the regulatory mechanisms of lens development, describe the recent progress of lens regeneration, explore the key molecular signaling pathways, and, more importantly, discuss the prospects and challenges of their clinical applications to provide reference for clinical transformations. Graphic abstract
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:0301-4851
1573-4978
DOI:10.1007/s11033-021-06489-5