Automated classification of diabetic retinopathy through reliable feature selection

Diabetic retinopathy (DR) is a complication of diabetes mellitus that damages the blood vessels in the retina. DR is considered a serious vision-threatening impediment that most diabetic subjects are at risk of developing. Effective automatic detection of DR is challenging. Feature extraction plays...

Full description

Saved in:
Bibliographic Details
Published inAustralasian physical & engineering sciences in medicine Vol. 43; no. 3; pp. 927 - 945
Main Authors Gayathri, S., Gopi, Varun P., Palanisamy, P.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.09.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2662-4729
0158-9938
2662-4737
2662-4737
1879-5447
DOI10.1007/s13246-020-00890-3

Cover

Loading…
More Information
Summary:Diabetic retinopathy (DR) is a complication of diabetes mellitus that damages the blood vessels in the retina. DR is considered a serious vision-threatening impediment that most diabetic subjects are at risk of developing. Effective automatic detection of DR is challenging. Feature extraction plays an important role in the effective classification of disease. Here we focus on a feature extraction technique that combines two feature extractors, speeded up robust features and binary robust invariant scalable keypoints, to extract the relevant features from retinal fundus images. The selection of top-ranked features using the MR-MR (maximum relevance-minimum redundancy) feature selection and ranking method enhances the efficiency of classification. The system is evaluated across various classifiers, such as support vector machine, Adaboost, Naive Bayes, Random Forest, and multi-layer perception (MLP) when giving input image features extracted from standard datasets (IDRiD, MESSIDOR, and DIARETDB0). The performances of the classifiers were analyzed by comparing their specificity, precision, recall, false positive rate, and accuracy values. We found that when the proposed feature extraction and selection technique is used together with MLP outperforms all the other classifiers for all datasets in binary and multiclass classification.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2662-4729
0158-9938
2662-4737
2662-4737
1879-5447
DOI:10.1007/s13246-020-00890-3