Handwritten pattern recognition for early Parkinson’s disease diagnosis

•A new software to Parkinson’s diagnosis was developed.•Three machine learning algorithms (SVM, OPF, and Bayesian classifier) were compared.•An experimental evaluation with 20 patients were made. Parkinson’s disease is a neurodegenerative disorder that affects around 10 million people in the world a...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition letters Vol. 125; pp. 78 - 84
Main Authors Bernardo, Lucas S., Quezada, Angeles, Munoz, Roberto, Maia, Fernanda Martins, Pereira, Clayton R., Wu, Wanqing, de Albuquerque, Victor Hugo C.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A new software to Parkinson’s diagnosis was developed.•Three machine learning algorithms (SVM, OPF, and Bayesian classifier) were compared.•An experimental evaluation with 20 patients were made. Parkinson’s disease is a neurodegenerative disorder that affects around 10 million people in the world and is slightly more prevalent in males. It is characterized by the loss of neurons in a region of the brain known as substantia nigra. The neurons of this region are responsible for synthesizing the neurotransmitter dopamine, and a decrease in the production of this substance may cause motor symptoms, a characteristic of the disease. To obtain a definitive diagnosis, the patient’s medical history is analyzed and the subject submitted to a series of clinical exams. One of these exams that can take place in the clinical environment comprises asking the patient to create a series of specific drawings. Our work is based on asking the patients to draw using a software developed for this specific purpose. The drawings will then be passed through a series of image methods to reduce noises and extract the characteristics of 11 metrics of each drawing; finally, these 11 metrics will be stored. Machine learning techniques such as Optimum-Path Forest, Support Vector Machine remove, and Naive Bayes use the dataset to search and learn of the characteristics for the process of classifying individuals distributed into two classes: sick and healthy.
AbstractList •A new software to Parkinson’s diagnosis was developed.•Three machine learning algorithms (SVM, OPF, and Bayesian classifier) were compared.•An experimental evaluation with 20 patients were made. Parkinson’s disease is a neurodegenerative disorder that affects around 10 million people in the world and is slightly more prevalent in males. It is characterized by the loss of neurons in a region of the brain known as substantia nigra. The neurons of this region are responsible for synthesizing the neurotransmitter dopamine, and a decrease in the production of this substance may cause motor symptoms, a characteristic of the disease. To obtain a definitive diagnosis, the patient’s medical history is analyzed and the subject submitted to a series of clinical exams. One of these exams that can take place in the clinical environment comprises asking the patient to create a series of specific drawings. Our work is based on asking the patients to draw using a software developed for this specific purpose. The drawings will then be passed through a series of image methods to reduce noises and extract the characteristics of 11 metrics of each drawing; finally, these 11 metrics will be stored. Machine learning techniques such as Optimum-Path Forest, Support Vector Machine remove, and Naive Bayes use the dataset to search and learn of the characteristics for the process of classifying individuals distributed into two classes: sick and healthy.
Author de Albuquerque, Victor Hugo C.
Quezada, Angeles
Munoz, Roberto
Bernardo, Lucas S.
Maia, Fernanda Martins
Wu, Wanqing
Pereira, Clayton R.
Author_xml – sequence: 1
  givenname: Lucas S.
  surname: Bernardo
  fullname: Bernardo, Lucas S.
  email: lucass.bernardo_@edu.unifor.br
  organization: Graduate Program in Applied Informatics, University of Fortaleza, Fortaleza-CE, Brazil
– sequence: 2
  givenname: Angeles
  surname: Quezada
  fullname: Quezada, Angeles
  email: angeles.quezada@tectijuana.edu.mx
  organization: Instituto Tecnológico de Tijuana, Tijuana, B.C, México
– sequence: 3
  givenname: Roberto
  orcidid: 0000-0003-1302-0206
  surname: Munoz
  fullname: Munoz, Roberto
  email: roberto.munoz@uv.cl
  organization: Escuela de Ingeniería Civil Informática, Centro de Investigación y Desarrollo en Ingeniería en Salud, Universidad de Valparaíso, Valparaíso, Chile
– sequence: 4
  givenname: Fernanda Martins
  surname: Maia
  fullname: Maia, Fernanda Martins
  email: fernandamaia@unifor.br
  organization: Medical Sciences Post-Graduation Program, University of Fortaleza. Neurology Department, Hospital Geral de Fortaleza, Fortaleza-CE, Brazil
– sequence: 5
  givenname: Clayton R.
  surname: Pereira
  fullname: Pereira, Clayton R.
  email: clayton@fc.unesp.br
  organization: UNESP - São Paulo State University, School of Sciences, Bauru, Brazil
– sequence: 6
  givenname: Wanqing
  orcidid: 0000-0003-0932-8785
  surname: Wu
  fullname: Wu, Wanqing
  email: wuwanqing@mail.sysu.edu.cn
  organization: School of Biomedical Engineering, Sun Yat-Sen University, Guanzhou, 510275, PR China
– sequence: 7
  givenname: Victor Hugo C.
  orcidid: 0000-0003-3886-4309
  surname: de Albuquerque
  fullname: de Albuquerque, Victor Hugo C.
  email: victor.albuquerque@unifor.br
  organization: Graduate Program in Applied Informatics, University of Fortaleza, Fortaleza-CE, Brazil
BookMark eNqFkM1KAzEUhYNUsK2-gYt5gRmTSTI_LgQpaoWCLnQd0js3JbUmJQlKd76Gr-eTmFJXLnR1Nuf7uPdMyMh5h4ScM1oxypqLdbXVKSBUNWV9RUVFKT8iY9a1ddlyIUZknGtt2TVSnpBJjGtKacP7bkzu59oN78GmhK7IloTBFVnlV84m611hfChQh82ueNThxbro3dfHZywGG1FHzKlXzkcbT8mx0ZuIZz85Jc-3N0-zebl4uLufXS9K4LJOpWwEBd7DYKAVplnKujZQc8ind5K1qIWEJfQS2LJjPQPsDHaCgVly0yA1fErEwQvBxxjQqG2wrzrsFKNqP4daq8Mcaj-HokLlOTJ2-QsDm_T-xRS03fwHXx1gzI-9WQwqgkUHONhcTWrw9m_BN0N7gzM
CitedBy_id crossref_primary_10_3390_biomedicines10112746
crossref_primary_10_3390_s20113236
crossref_primary_10_3390_math10224218
crossref_primary_10_3390_diagnostics12123000
crossref_primary_10_3390_diagnostics10110904
crossref_primary_10_1016_j_heliyon_2024_e25469
crossref_primary_10_1016_j_ahr_2024_100206
crossref_primary_10_1016_j_compbiomed_2022_106418
crossref_primary_10_1016_j_engappai_2020_103955
crossref_primary_10_1080_13682199_2023_2200060
crossref_primary_10_1016_j_arr_2023_102013
crossref_primary_10_3390_s20205840
crossref_primary_10_1016_j_future_2020_11_020
crossref_primary_10_1109_ACCESS_2023_3233969
crossref_primary_10_1016_j_ijmedinf_2020_104283
crossref_primary_10_3390_app10051827
crossref_primary_10_1016_j_patrec_2019_08_028
crossref_primary_10_1109_ACCESS_2024_3408680
crossref_primary_10_1007_s00500_021_05810_5
crossref_primary_10_1007_s00521_021_06626_y
crossref_primary_10_1007_s10072_024_07734_y
crossref_primary_10_1016_j_bspc_2022_103551
crossref_primary_10_1016_j_eswa_2021_115013
crossref_primary_10_1016_j_patrec_2024_09_026
crossref_primary_10_3390_diagnostics11081395
crossref_primary_10_1007_s11128_024_04588_3
crossref_primary_10_3390_math11143071
crossref_primary_10_1145_3397161
crossref_primary_10_1016_j_apacoust_2019_05_019
crossref_primary_10_1186_s12888_024_06237_6
Cites_doi 10.1038/nrdp.2017.13
10.1155/2018/4581272
10.1172/JCI29178
10.1016/j.cogsys.2018.12.002
10.1590/0004-282X20150029
10.1016/j.bspc.2016.08.003
10.1001/archneur.56.1.33
10.1002/mds.26642
10.14445/22312803/IJCTT-V53P104
10.1038/sdata.2016.11
10.5747/ce.2017.v09.n1.e182
10.1001/jama.2015.120
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.patrec.2019.04.003
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1872-7344
EndPage 84
ExternalDocumentID 10_1016_j_patrec_2019_04_003
S016786551930114X
GroupedDBID --M
.DC
.~1
0R~
123
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
J1W
JJJVA
KOM
LG9
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
WH7
XPP
ZMT
~G-
--K
1B1
29O
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADMXK
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
IHE
R2-
RPZ
SBC
SDS
SEW
SSH
VOH
WUQ
Y6R
ID FETCH-LOGICAL-c352t-5640c39cdfc74f6b522fc23c2018517ea45cbc95c1b8191ce8fe841cfb3f6e0f3
IEDL.DBID .~1
ISSN 0167-8655
IngestDate Tue Jul 01 02:40:39 EDT 2025
Thu Apr 24 23:07:11 EDT 2025
Fri Feb 23 02:24:35 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords image processing
41A10
65D05
65D17
machine learning
41A05
Parkinson’s disease
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-5640c39cdfc74f6b522fc23c2018517ea45cbc95c1b8191ce8fe841cfb3f6e0f3
ORCID 0000-0003-1302-0206
0000-0003-3886-4309
0000-0003-0932-8785
OpenAccessLink http://doi.org/10.1016/j.patrec.2019.04.003
PageCount 7
ParticipantIDs crossref_primary_10_1016_j_patrec_2019_04_003
crossref_citationtrail_10_1016_j_patrec_2019_04_003
elsevier_sciencedirect_doi_10_1016_j_patrec_2019_04_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
2019-07-00
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Pattern recognition letters
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kotsavasiloglou, Kostikis, Hristu-Varsakelis, Arnaoutoglou (bib0006) 2017; 31
Gelb, Oliver, Gilman (bib0004) 1999; 56
Russi, da Silva, Pereira, Pazoti, de Almeida, Artero (bib0012) 2017; 9
Poewe, Seppi, Tanner, Halliday, Brundin, Volkmann, Schrag, Lang (bib0010) 2017; 3
Bot, Suver, Neto, Kellen, Klein, Bare, Doerr, Pratap, Wilbanks, Dorsey, Friend, Trister (bib0002) 2016; 3
Savitt, Dawson, Dawson (bib0013) 2006; 116
Lauraitis, Maskeliunas, Damasevicius (bib0007) 2018; 2018
da Mata, Barros, Lima (bib0008) 2008; 16
Sharma, Sundaram, Sharma, Sharma, Gupta (bib0014) 2019; 54
tha, gopalan (bib0015) 2017; 53
Ramos, Naylor, Demanuele, Zhang, Amato, Hameed, Wacnik, Kangaroo, Anand, Bilal, Ho, Bergethon, Erb, Karlin (bib0011) 2018; 90
Kieburtz, Tilley, Elm, Babcock, Hauser, Ross, Augustine, Augustine, Aminoff, Bodis-Wollner (bib0005) 2015; 313
Espay, Bonato, Nahab, Maetzler, Dean, Klucken, Eskofier, Merola, Horak, Lang (bib0003) 2016; 31
Munhoz, Moro, Silveira-Moriyama, Teive (bib0009) 2015; 73
Aharonson, Schlesinger, McDonald, Dubowsky, Korczyn (bib0001) 2017
Kieburtz (10.1016/j.patrec.2019.04.003_bib0005) 2015; 313
Ramos (10.1016/j.patrec.2019.04.003_bib0011) 2018; 90
Bot (10.1016/j.patrec.2019.04.003_bib0002) 2016; 3
Sharma (10.1016/j.patrec.2019.04.003_bib0014) 2019; 54
Lauraitis (10.1016/j.patrec.2019.04.003_bib0007) 2018; 2018
Poewe (10.1016/j.patrec.2019.04.003_bib0010) 2017; 3
Russi (10.1016/j.patrec.2019.04.003_bib0012) 2017; 9
Munhoz (10.1016/j.patrec.2019.04.003_bib0009) 2015; 73
tha (10.1016/j.patrec.2019.04.003_bib0015) 2017; 53
Espay (10.1016/j.patrec.2019.04.003_bib0003) 2016; 31
da Mata (10.1016/j.patrec.2019.04.003_bib0008) 2008; 16
Kotsavasiloglou (10.1016/j.patrec.2019.04.003_bib0006) 2017; 31
Savitt (10.1016/j.patrec.2019.04.003_bib0013) 2006; 116
Gelb (10.1016/j.patrec.2019.04.003_bib0004) 1999; 56
Aharonson (10.1016/j.patrec.2019.04.003_sbref0001) 2017
References_xml – volume: 73
  start-page: 454
  year: 2015
  end-page: 462
  ident: bib0009
  article-title: Non-motor signs in parkinson’s disease: a review
  publication-title: Arquivos de neuro-psiquiatria
– volume: 56
  start-page: 33
  year: 1999
  end-page: 39
  ident: bib0004
  article-title: Diagnostic criteria for parkinson disease
  publication-title: Arch. Neurol.
– volume: 3
  start-page: 17013
  year: 2017
  ident: bib0010
  article-title: Parkinson disease
  publication-title: Nat. Rev. Dis. Primers
– volume: 53
  start-page: 19
  year: 2017
  end-page: 22
  ident: bib0015
  article-title: Parkinson disease and voice
  publication-title: Int. J. Comput. Trends Technol.
– volume: 3
  start-page: 160011
  year: 2016
  ident: bib0002
  article-title: The mPower study, parkinson disease mobile data collected using ResearchKit
  publication-title: Sci.c Data
– volume: 31
  start-page: 1272
  year: 2016
  end-page: 1282
  ident: bib0003
  article-title: Technology in parkinson’s disease: Challenges and opportunities
  publication-title: Mov. Disord.
– volume: 31
  start-page: 174
  year: 2017
  end-page: 180
  ident: bib0006
  article-title: Machine learning-based classification of simple drawing movements in parkinson’s disease
  publication-title: Biomed. Signal Process. Control
– volume: 90
  year: 2018
  ident: bib0011
  article-title: Wearable inertial sensor technology produces endpoints with good reliability in healthy volunteers and can detect changes in parkinson disease patients with levodopa (p6.086)
  publication-title: Neurology
– volume: 9
  start-page: 33
  year: 2017
  end-page: 44
  ident: bib0012
  article-title: Detecção do Padrão de motricidade fina em pacientes com doença de Parkinson a partir de imagens digitalizadas
  publication-title: Colloq. Exactarum
– volume: 116
  start-page: 1744
  year: 2006
  end-page: 1754
  ident: bib0013
  article-title: Diagnosis and treatment of parkinson disease: molecules to medicine
  publication-title: J. Clin. Invest.
– volume: 54
  start-page: 100
  year: 2019
  end-page: 115
  ident: bib0014
  article-title: Diagnosis of Parkinson’s disease using modified grey wolf optimization
  publication-title: Cogn. Syst. Res.
– volume: 313
  start-page: 584
  year: 2015
  end-page: 593
  ident: bib0005
  article-title: Effect of creatine monohydrate on clinical progression in patients with parkinson disease: a randomized clinical trial
  publication-title: Jama
– volume: 16
  start-page: 20
  year: 2008
  end-page: 24
  ident: bib0008
  article-title: Avaliação do risco de queda em pacientes com doença de parkinson
  publication-title: Rev. Neurocienc.
– year: 2017
  ident: bib0001
  article-title: Monitoring of parkinson’s patients gait using simple walker based motion sensing and data analysis
  publication-title: 2017 Design of Medical Devices Conference
– volume: 2018
  year: 2018
  ident: bib0007
  article-title: ANN and fuzzy logic based model to evaluate huntington disease symptoms
  publication-title: J. Healthc. Eng.
– volume: 3
  start-page: 17013
  year: 2017
  ident: 10.1016/j.patrec.2019.04.003_bib0010
  article-title: Parkinson disease
  publication-title: Nat. Rev. Dis. Primers
  doi: 10.1038/nrdp.2017.13
– volume: 16
  start-page: 20
  year: 2008
  ident: 10.1016/j.patrec.2019.04.003_bib0008
  article-title: Avaliação do risco de queda em pacientes com doença de parkinson
  publication-title: Rev. Neurocienc.
– volume: 2018
  year: 2018
  ident: 10.1016/j.patrec.2019.04.003_bib0007
  article-title: ANN and fuzzy logic based model to evaluate huntington disease symptoms
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2018/4581272
– volume: 116
  start-page: 1744
  issue: 7
  year: 2006
  ident: 10.1016/j.patrec.2019.04.003_bib0013
  article-title: Diagnosis and treatment of parkinson disease: molecules to medicine
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI29178
– volume: 90
  issue: 15 Supplement
  year: 2018
  ident: 10.1016/j.patrec.2019.04.003_bib0011
  article-title: Wearable inertial sensor technology produces endpoints with good reliability in healthy volunteers and can detect changes in parkinson disease patients with levodopa (p6.086)
  publication-title: Neurology
– volume: 54
  start-page: 100
  year: 2019
  ident: 10.1016/j.patrec.2019.04.003_bib0014
  article-title: Diagnosis of Parkinson’s disease using modified grey wolf optimization
  publication-title: Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2018.12.002
– volume: 73
  start-page: 454
  issue: 5
  year: 2015
  ident: 10.1016/j.patrec.2019.04.003_bib0009
  article-title: Non-motor signs in parkinson’s disease: a review
  publication-title: Arquivos de neuro-psiquiatria
  doi: 10.1590/0004-282X20150029
– volume: 31
  start-page: 174
  year: 2017
  ident: 10.1016/j.patrec.2019.04.003_bib0006
  article-title: Machine learning-based classification of simple drawing movements in parkinson’s disease
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2016.08.003
– volume: 56
  start-page: 33
  issue: 1
  year: 1999
  ident: 10.1016/j.patrec.2019.04.003_bib0004
  article-title: Diagnostic criteria for parkinson disease
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.56.1.33
– volume: 31
  start-page: 1272
  issue: 9
  year: 2016
  ident: 10.1016/j.patrec.2019.04.003_bib0003
  article-title: Technology in parkinson’s disease: Challenges and opportunities
  publication-title: Mov. Disord.
  doi: 10.1002/mds.26642
– volume: 53
  start-page: 19
  issue: 1
  year: 2017
  ident: 10.1016/j.patrec.2019.04.003_bib0015
  article-title: Parkinson disease and voice
  publication-title: Int. J. Comput. Trends Technol.
  doi: 10.14445/22312803/IJCTT-V53P104
– volume: 3
  start-page: 160011
  year: 2016
  ident: 10.1016/j.patrec.2019.04.003_bib0002
  article-title: The mPower study, parkinson disease mobile data collected using ResearchKit
  publication-title: Sci.c Data
  doi: 10.1038/sdata.2016.11
– volume: 9
  start-page: 33
  issue: 1
  year: 2017
  ident: 10.1016/j.patrec.2019.04.003_bib0012
  article-title: Detecção do Padrão de motricidade fina em pacientes com doença de Parkinson a partir de imagens digitalizadas
  publication-title: Colloq. Exactarum
  doi: 10.5747/ce.2017.v09.n1.e182
– year: 2017
  ident: 10.1016/j.patrec.2019.04.003_sbref0001
  article-title: Monitoring of parkinson’s patients gait using simple walker based motion sensing and data analysis
– volume: 313
  start-page: 584
  issue: 6
  year: 2015
  ident: 10.1016/j.patrec.2019.04.003_bib0005
  article-title: Effect of creatine monohydrate on clinical progression in patients with parkinson disease: a randomized clinical trial
  publication-title: Jama
  doi: 10.1001/jama.2015.120
SSID ssj0006398
Score 2.4635937
Snippet •A new software to Parkinson’s diagnosis was developed.•Three machine learning algorithms (SVM, OPF, and Bayesian classifier) were compared.•An experimental...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 78
SubjectTerms image processing
machine learning
Parkinson’s disease
Title Handwritten pattern recognition for early Parkinson’s disease diagnosis
URI https://dx.doi.org/10.1016/j.patrec.2019.04.003
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1V5QIHlgKiLJUPXEPTxll6rCqqFEQvUKm3KB7bUhFKK1rEDfEb_B5fgiexy3IAiVOUyJaSsT1-47x5A3De4WEshBSe4toEKDKMvFwHoaf9QPqSY8QFJQrfjKN0wq-m4bQGA5cLQ7RK6_srn156a_ukba3ZXsxm7Vsi0FNapYEghOqnlMHOY5rlFy-fNA-zAydO35tau_S5kuNF582KhAw7vVLw1JXO-rk9fdlyhruwbbEi61evswc1VTRgx9VhYHZZNmDri6jgPozSvJDPJuY3aJgtSvnMgq15QvOCGZjKFOkaM0p5LrO_3l_flsz-qzHXkn03Wx7AZHh5N0g9WzDBQ4OjVl4YcR-DHkqNMdeRMNhKYzdA830GWMUq5yEK7IXYERSnoUq0SngHtQh0pHwdHEK9mBfqCBiKWGmhlRA-chNS5BJDmXTN8kaUZlybEDg7ZWjVxKmoxUPmaGP3WWXdjKyb-ZxUSJvgrXstKjWNP9rHbgiyb7MiMw7_157H_-55Apt0V1FyT6G-enxSZwZ4rESrnFkt2OiPrtPxB-GO3JA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2VcgAOLAVEWX3gGpo0ztIjqqhSaHuhlXqL4rEtFaG0okXcEL_B7_EljLOUwgEkTpESW0rG9viN8-YNwKXDvUAIKSzFNQUo0vOtRLuepW1X2pKjz4VJFO4P_GjEb8feuALtMhfG0CoL35_79MxbF3cahTUbs8mkcW8I9CatkiCIQfXjNVjntHxNGYOr1y-eB23BYSnwbZqX-XMZycscOCujZOi0MsXTsnbWz_1pZc_p7MJ2ARbZdf4-e1BRaQ12ykIMrFiXNdhaURXch26UpPKFgn6Cw2yW6WembEkUmqaMcCpTRtiYmZznLP3r4-19zoqfNXTN6HeT-QGMOjfDdmQVFRMsJCC1sDyf2-i2UGoMuPYFgSuNTRfp-whZBSrhHgpseegIE6ihCrUKuYNauNpXtnYPoZpOU3UEDEWgtNBKCBs5xRSJRE-GTVrfiJIGtg5uaacYCzlxU9XiMS55Yw9xbt3YWDe2uZEhrYO17DXL5TT-aB-UQxB_mxYxefxfex7_u-cFbETDfi_udQd3J7BpnuT83FOoLp6e1RmhkIU4z2bZJwc53h4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Handwritten+pattern+recognition+for+early+Parkinson%E2%80%99s+disease+diagnosis&rft.jtitle=Pattern+recognition+letters&rft.au=Bernardo%2C+Lucas+S.&rft.au=Quezada%2C+Angeles&rft.au=Munoz%2C+Roberto&rft.au=Maia%2C+Fernanda+Martins&rft.date=2019-07-01&rft.issn=0167-8655&rft.volume=125&rft.spage=78&rft.epage=84&rft_id=info:doi/10.1016%2Fj.patrec.2019.04.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patrec_2019_04_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon