Handwritten pattern recognition for early Parkinson’s disease diagnosis
•A new software to Parkinson’s diagnosis was developed.•Three machine learning algorithms (SVM, OPF, and Bayesian classifier) were compared.•An experimental evaluation with 20 patients were made. Parkinson’s disease is a neurodegenerative disorder that affects around 10 million people in the world a...
Saved in:
Published in | Pattern recognition letters Vol. 125; pp. 78 - 84 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A new software to Parkinson’s diagnosis was developed.•Three machine learning algorithms (SVM, OPF, and Bayesian classifier) were compared.•An experimental evaluation with 20 patients were made.
Parkinson’s disease is a neurodegenerative disorder that affects around 10 million people in the world and is slightly more prevalent in males. It is characterized by the loss of neurons in a region of the brain known as substantia nigra. The neurons of this region are responsible for synthesizing the neurotransmitter dopamine, and a decrease in the production of this substance may cause motor symptoms, a characteristic of the disease. To obtain a definitive diagnosis, the patient’s medical history is analyzed and the subject submitted to a series of clinical exams. One of these exams that can take place in the clinical environment comprises asking the patient to create a series of specific drawings. Our work is based on asking the patients to draw using a software developed for this specific purpose. The drawings will then be passed through a series of image methods to reduce noises and extract the characteristics of 11 metrics of each drawing; finally, these 11 metrics will be stored. Machine learning techniques such as Optimum-Path Forest, Support Vector Machine remove, and Naive Bayes use the dataset to search and learn of the characteristics for the process of classifying individuals distributed into two classes: sick and healthy. |
---|---|
AbstractList | •A new software to Parkinson’s diagnosis was developed.•Three machine learning algorithms (SVM, OPF, and Bayesian classifier) were compared.•An experimental evaluation with 20 patients were made.
Parkinson’s disease is a neurodegenerative disorder that affects around 10 million people in the world and is slightly more prevalent in males. It is characterized by the loss of neurons in a region of the brain known as substantia nigra. The neurons of this region are responsible for synthesizing the neurotransmitter dopamine, and a decrease in the production of this substance may cause motor symptoms, a characteristic of the disease. To obtain a definitive diagnosis, the patient’s medical history is analyzed and the subject submitted to a series of clinical exams. One of these exams that can take place in the clinical environment comprises asking the patient to create a series of specific drawings. Our work is based on asking the patients to draw using a software developed for this specific purpose. The drawings will then be passed through a series of image methods to reduce noises and extract the characteristics of 11 metrics of each drawing; finally, these 11 metrics will be stored. Machine learning techniques such as Optimum-Path Forest, Support Vector Machine remove, and Naive Bayes use the dataset to search and learn of the characteristics for the process of classifying individuals distributed into two classes: sick and healthy. |
Author | de Albuquerque, Victor Hugo C. Quezada, Angeles Munoz, Roberto Bernardo, Lucas S. Maia, Fernanda Martins Wu, Wanqing Pereira, Clayton R. |
Author_xml | – sequence: 1 givenname: Lucas S. surname: Bernardo fullname: Bernardo, Lucas S. email: lucass.bernardo_@edu.unifor.br organization: Graduate Program in Applied Informatics, University of Fortaleza, Fortaleza-CE, Brazil – sequence: 2 givenname: Angeles surname: Quezada fullname: Quezada, Angeles email: angeles.quezada@tectijuana.edu.mx organization: Instituto Tecnológico de Tijuana, Tijuana, B.C, México – sequence: 3 givenname: Roberto orcidid: 0000-0003-1302-0206 surname: Munoz fullname: Munoz, Roberto email: roberto.munoz@uv.cl organization: Escuela de Ingeniería Civil Informática, Centro de Investigación y Desarrollo en Ingeniería en Salud, Universidad de Valparaíso, Valparaíso, Chile – sequence: 4 givenname: Fernanda Martins surname: Maia fullname: Maia, Fernanda Martins email: fernandamaia@unifor.br organization: Medical Sciences Post-Graduation Program, University of Fortaleza. Neurology Department, Hospital Geral de Fortaleza, Fortaleza-CE, Brazil – sequence: 5 givenname: Clayton R. surname: Pereira fullname: Pereira, Clayton R. email: clayton@fc.unesp.br organization: UNESP - São Paulo State University, School of Sciences, Bauru, Brazil – sequence: 6 givenname: Wanqing orcidid: 0000-0003-0932-8785 surname: Wu fullname: Wu, Wanqing email: wuwanqing@mail.sysu.edu.cn organization: School of Biomedical Engineering, Sun Yat-Sen University, Guanzhou, 510275, PR China – sequence: 7 givenname: Victor Hugo C. orcidid: 0000-0003-3886-4309 surname: de Albuquerque fullname: de Albuquerque, Victor Hugo C. email: victor.albuquerque@unifor.br organization: Graduate Program in Applied Informatics, University of Fortaleza, Fortaleza-CE, Brazil |
BookMark | eNqFkM1KAzEUhYNUsK2-gYt5gRmTSTI_LgQpaoWCLnQd0js3JbUmJQlKd76Gr-eTmFJXLnR1Nuf7uPdMyMh5h4ScM1oxypqLdbXVKSBUNWV9RUVFKT8iY9a1ddlyIUZknGtt2TVSnpBJjGtKacP7bkzu59oN78GmhK7IloTBFVnlV84m611hfChQh82ueNThxbro3dfHZywGG1FHzKlXzkcbT8mx0ZuIZz85Jc-3N0-zebl4uLufXS9K4LJOpWwEBd7DYKAVplnKujZQc8ind5K1qIWEJfQS2LJjPQPsDHaCgVly0yA1fErEwQvBxxjQqG2wrzrsFKNqP4daq8Mcaj-HokLlOTJ2-QsDm_T-xRS03fwHXx1gzI-9WQwqgkUHONhcTWrw9m_BN0N7gzM |
CitedBy_id | crossref_primary_10_3390_biomedicines10112746 crossref_primary_10_3390_s20113236 crossref_primary_10_3390_math10224218 crossref_primary_10_3390_diagnostics12123000 crossref_primary_10_3390_diagnostics10110904 crossref_primary_10_1016_j_heliyon_2024_e25469 crossref_primary_10_1016_j_ahr_2024_100206 crossref_primary_10_1016_j_compbiomed_2022_106418 crossref_primary_10_1016_j_engappai_2020_103955 crossref_primary_10_1080_13682199_2023_2200060 crossref_primary_10_1016_j_arr_2023_102013 crossref_primary_10_3390_s20205840 crossref_primary_10_1016_j_future_2020_11_020 crossref_primary_10_1109_ACCESS_2023_3233969 crossref_primary_10_1016_j_ijmedinf_2020_104283 crossref_primary_10_3390_app10051827 crossref_primary_10_1016_j_patrec_2019_08_028 crossref_primary_10_1109_ACCESS_2024_3408680 crossref_primary_10_1007_s00500_021_05810_5 crossref_primary_10_1007_s00521_021_06626_y crossref_primary_10_1007_s10072_024_07734_y crossref_primary_10_1016_j_bspc_2022_103551 crossref_primary_10_1016_j_eswa_2021_115013 crossref_primary_10_1016_j_patrec_2024_09_026 crossref_primary_10_3390_diagnostics11081395 crossref_primary_10_1007_s11128_024_04588_3 crossref_primary_10_3390_math11143071 crossref_primary_10_1145_3397161 crossref_primary_10_1016_j_apacoust_2019_05_019 crossref_primary_10_1186_s12888_024_06237_6 |
Cites_doi | 10.1038/nrdp.2017.13 10.1155/2018/4581272 10.1172/JCI29178 10.1016/j.cogsys.2018.12.002 10.1590/0004-282X20150029 10.1016/j.bspc.2016.08.003 10.1001/archneur.56.1.33 10.1002/mds.26642 10.14445/22312803/IJCTT-V53P104 10.1038/sdata.2016.11 10.5747/ce.2017.v09.n1.e182 10.1001/jama.2015.120 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.patrec.2019.04.003 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1872-7344 |
EndPage | 84 |
ExternalDocumentID | 10_1016_j_patrec_2019_04_003 S016786551930114X |
GroupedDBID | --M .DC .~1 0R~ 123 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ J1W JJJVA KOM LG9 LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL SDF SDG SDP SES SPC SPCBC SST SSV SSZ T5K TN5 UNMZH WH7 XPP ZMT ~G- --K 1B1 29O AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADMXK ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HLZ HVGLF HZ~ IHE R2- RPZ SBC SDS SEW SSH VOH WUQ Y6R |
ID | FETCH-LOGICAL-c352t-5640c39cdfc74f6b522fc23c2018517ea45cbc95c1b8191ce8fe841cfb3f6e0f3 |
IEDL.DBID | .~1 |
ISSN | 0167-8655 |
IngestDate | Tue Jul 01 02:40:39 EDT 2025 Thu Apr 24 23:07:11 EDT 2025 Fri Feb 23 02:24:35 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | image processing 41A10 65D05 65D17 machine learning 41A05 Parkinson’s disease |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-5640c39cdfc74f6b522fc23c2018517ea45cbc95c1b8191ce8fe841cfb3f6e0f3 |
ORCID | 0000-0003-1302-0206 0000-0003-3886-4309 0000-0003-0932-8785 |
OpenAccessLink | http://doi.org/10.1016/j.patrec.2019.04.003 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1016_j_patrec_2019_04_003 crossref_citationtrail_10_1016_j_patrec_2019_04_003 elsevier_sciencedirect_doi_10_1016_j_patrec_2019_04_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 2019-07-00 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Pattern recognition letters |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kotsavasiloglou, Kostikis, Hristu-Varsakelis, Arnaoutoglou (bib0006) 2017; 31 Gelb, Oliver, Gilman (bib0004) 1999; 56 Russi, da Silva, Pereira, Pazoti, de Almeida, Artero (bib0012) 2017; 9 Poewe, Seppi, Tanner, Halliday, Brundin, Volkmann, Schrag, Lang (bib0010) 2017; 3 Bot, Suver, Neto, Kellen, Klein, Bare, Doerr, Pratap, Wilbanks, Dorsey, Friend, Trister (bib0002) 2016; 3 Savitt, Dawson, Dawson (bib0013) 2006; 116 Lauraitis, Maskeliunas, Damasevicius (bib0007) 2018; 2018 da Mata, Barros, Lima (bib0008) 2008; 16 Sharma, Sundaram, Sharma, Sharma, Gupta (bib0014) 2019; 54 tha, gopalan (bib0015) 2017; 53 Ramos, Naylor, Demanuele, Zhang, Amato, Hameed, Wacnik, Kangaroo, Anand, Bilal, Ho, Bergethon, Erb, Karlin (bib0011) 2018; 90 Kieburtz, Tilley, Elm, Babcock, Hauser, Ross, Augustine, Augustine, Aminoff, Bodis-Wollner (bib0005) 2015; 313 Espay, Bonato, Nahab, Maetzler, Dean, Klucken, Eskofier, Merola, Horak, Lang (bib0003) 2016; 31 Munhoz, Moro, Silveira-Moriyama, Teive (bib0009) 2015; 73 Aharonson, Schlesinger, McDonald, Dubowsky, Korczyn (bib0001) 2017 Kieburtz (10.1016/j.patrec.2019.04.003_bib0005) 2015; 313 Ramos (10.1016/j.patrec.2019.04.003_bib0011) 2018; 90 Bot (10.1016/j.patrec.2019.04.003_bib0002) 2016; 3 Sharma (10.1016/j.patrec.2019.04.003_bib0014) 2019; 54 Lauraitis (10.1016/j.patrec.2019.04.003_bib0007) 2018; 2018 Poewe (10.1016/j.patrec.2019.04.003_bib0010) 2017; 3 Russi (10.1016/j.patrec.2019.04.003_bib0012) 2017; 9 Munhoz (10.1016/j.patrec.2019.04.003_bib0009) 2015; 73 tha (10.1016/j.patrec.2019.04.003_bib0015) 2017; 53 Espay (10.1016/j.patrec.2019.04.003_bib0003) 2016; 31 da Mata (10.1016/j.patrec.2019.04.003_bib0008) 2008; 16 Kotsavasiloglou (10.1016/j.patrec.2019.04.003_bib0006) 2017; 31 Savitt (10.1016/j.patrec.2019.04.003_bib0013) 2006; 116 Gelb (10.1016/j.patrec.2019.04.003_bib0004) 1999; 56 Aharonson (10.1016/j.patrec.2019.04.003_sbref0001) 2017 |
References_xml | – volume: 73 start-page: 454 year: 2015 end-page: 462 ident: bib0009 article-title: Non-motor signs in parkinson’s disease: a review publication-title: Arquivos de neuro-psiquiatria – volume: 56 start-page: 33 year: 1999 end-page: 39 ident: bib0004 article-title: Diagnostic criteria for parkinson disease publication-title: Arch. Neurol. – volume: 3 start-page: 17013 year: 2017 ident: bib0010 article-title: Parkinson disease publication-title: Nat. Rev. Dis. Primers – volume: 53 start-page: 19 year: 2017 end-page: 22 ident: bib0015 article-title: Parkinson disease and voice publication-title: Int. J. Comput. Trends Technol. – volume: 3 start-page: 160011 year: 2016 ident: bib0002 article-title: The mPower study, parkinson disease mobile data collected using ResearchKit publication-title: Sci.c Data – volume: 31 start-page: 1272 year: 2016 end-page: 1282 ident: bib0003 article-title: Technology in parkinson’s disease: Challenges and opportunities publication-title: Mov. Disord. – volume: 31 start-page: 174 year: 2017 end-page: 180 ident: bib0006 article-title: Machine learning-based classification of simple drawing movements in parkinson’s disease publication-title: Biomed. Signal Process. Control – volume: 90 year: 2018 ident: bib0011 article-title: Wearable inertial sensor technology produces endpoints with good reliability in healthy volunteers and can detect changes in parkinson disease patients with levodopa (p6.086) publication-title: Neurology – volume: 9 start-page: 33 year: 2017 end-page: 44 ident: bib0012 article-title: Detecção do Padrão de motricidade fina em pacientes com doença de Parkinson a partir de imagens digitalizadas publication-title: Colloq. Exactarum – volume: 116 start-page: 1744 year: 2006 end-page: 1754 ident: bib0013 article-title: Diagnosis and treatment of parkinson disease: molecules to medicine publication-title: J. Clin. Invest. – volume: 54 start-page: 100 year: 2019 end-page: 115 ident: bib0014 article-title: Diagnosis of Parkinson’s disease using modified grey wolf optimization publication-title: Cogn. Syst. Res. – volume: 313 start-page: 584 year: 2015 end-page: 593 ident: bib0005 article-title: Effect of creatine monohydrate on clinical progression in patients with parkinson disease: a randomized clinical trial publication-title: Jama – volume: 16 start-page: 20 year: 2008 end-page: 24 ident: bib0008 article-title: Avaliação do risco de queda em pacientes com doença de parkinson publication-title: Rev. Neurocienc. – year: 2017 ident: bib0001 article-title: Monitoring of parkinson’s patients gait using simple walker based motion sensing and data analysis publication-title: 2017 Design of Medical Devices Conference – volume: 2018 year: 2018 ident: bib0007 article-title: ANN and fuzzy logic based model to evaluate huntington disease symptoms publication-title: J. Healthc. Eng. – volume: 3 start-page: 17013 year: 2017 ident: 10.1016/j.patrec.2019.04.003_bib0010 article-title: Parkinson disease publication-title: Nat. Rev. Dis. Primers doi: 10.1038/nrdp.2017.13 – volume: 16 start-page: 20 year: 2008 ident: 10.1016/j.patrec.2019.04.003_bib0008 article-title: Avaliação do risco de queda em pacientes com doença de parkinson publication-title: Rev. Neurocienc. – volume: 2018 year: 2018 ident: 10.1016/j.patrec.2019.04.003_bib0007 article-title: ANN and fuzzy logic based model to evaluate huntington disease symptoms publication-title: J. Healthc. Eng. doi: 10.1155/2018/4581272 – volume: 116 start-page: 1744 issue: 7 year: 2006 ident: 10.1016/j.patrec.2019.04.003_bib0013 article-title: Diagnosis and treatment of parkinson disease: molecules to medicine publication-title: J. Clin. Invest. doi: 10.1172/JCI29178 – volume: 90 issue: 15 Supplement year: 2018 ident: 10.1016/j.patrec.2019.04.003_bib0011 article-title: Wearable inertial sensor technology produces endpoints with good reliability in healthy volunteers and can detect changes in parkinson disease patients with levodopa (p6.086) publication-title: Neurology – volume: 54 start-page: 100 year: 2019 ident: 10.1016/j.patrec.2019.04.003_bib0014 article-title: Diagnosis of Parkinson’s disease using modified grey wolf optimization publication-title: Cogn. Syst. Res. doi: 10.1016/j.cogsys.2018.12.002 – volume: 73 start-page: 454 issue: 5 year: 2015 ident: 10.1016/j.patrec.2019.04.003_bib0009 article-title: Non-motor signs in parkinson’s disease: a review publication-title: Arquivos de neuro-psiquiatria doi: 10.1590/0004-282X20150029 – volume: 31 start-page: 174 year: 2017 ident: 10.1016/j.patrec.2019.04.003_bib0006 article-title: Machine learning-based classification of simple drawing movements in parkinson’s disease publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2016.08.003 – volume: 56 start-page: 33 issue: 1 year: 1999 ident: 10.1016/j.patrec.2019.04.003_bib0004 article-title: Diagnostic criteria for parkinson disease publication-title: Arch. Neurol. doi: 10.1001/archneur.56.1.33 – volume: 31 start-page: 1272 issue: 9 year: 2016 ident: 10.1016/j.patrec.2019.04.003_bib0003 article-title: Technology in parkinson’s disease: Challenges and opportunities publication-title: Mov. Disord. doi: 10.1002/mds.26642 – volume: 53 start-page: 19 issue: 1 year: 2017 ident: 10.1016/j.patrec.2019.04.003_bib0015 article-title: Parkinson disease and voice publication-title: Int. J. Comput. Trends Technol. doi: 10.14445/22312803/IJCTT-V53P104 – volume: 3 start-page: 160011 year: 2016 ident: 10.1016/j.patrec.2019.04.003_bib0002 article-title: The mPower study, parkinson disease mobile data collected using ResearchKit publication-title: Sci.c Data doi: 10.1038/sdata.2016.11 – volume: 9 start-page: 33 issue: 1 year: 2017 ident: 10.1016/j.patrec.2019.04.003_bib0012 article-title: Detecção do Padrão de motricidade fina em pacientes com doença de Parkinson a partir de imagens digitalizadas publication-title: Colloq. Exactarum doi: 10.5747/ce.2017.v09.n1.e182 – year: 2017 ident: 10.1016/j.patrec.2019.04.003_sbref0001 article-title: Monitoring of parkinson’s patients gait using simple walker based motion sensing and data analysis – volume: 313 start-page: 584 issue: 6 year: 2015 ident: 10.1016/j.patrec.2019.04.003_bib0005 article-title: Effect of creatine monohydrate on clinical progression in patients with parkinson disease: a randomized clinical trial publication-title: Jama doi: 10.1001/jama.2015.120 |
SSID | ssj0006398 |
Score | 2.4635937 |
Snippet | •A new software to Parkinson’s diagnosis was developed.•Three machine learning algorithms (SVM, OPF, and Bayesian classifier) were compared.•An experimental... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 78 |
SubjectTerms | image processing machine learning Parkinson’s disease |
Title | Handwritten pattern recognition for early Parkinson’s disease diagnosis |
URI | https://dx.doi.org/10.1016/j.patrec.2019.04.003 |
Volume | 125 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1V5QIHlgKiLJUPXEPTxll6rCqqFEQvUKm3KB7bUhFKK1rEDfEb_B5fgiexy3IAiVOUyJaSsT1-47x5A3De4WEshBSe4toEKDKMvFwHoaf9QPqSY8QFJQrfjKN0wq-m4bQGA5cLQ7RK6_srn156a_ukba3ZXsxm7Vsi0FNapYEghOqnlMHOY5rlFy-fNA-zAydO35tau_S5kuNF582KhAw7vVLw1JXO-rk9fdlyhruwbbEi61evswc1VTRgx9VhYHZZNmDri6jgPozSvJDPJuY3aJgtSvnMgq15QvOCGZjKFOkaM0p5LrO_3l_flsz-qzHXkn03Wx7AZHh5N0g9WzDBQ4OjVl4YcR-DHkqNMdeRMNhKYzdA830GWMUq5yEK7IXYERSnoUq0SngHtQh0pHwdHEK9mBfqCBiKWGmhlRA-chNS5BJDmXTN8kaUZlybEDg7ZWjVxKmoxUPmaGP3WWXdjKyb-ZxUSJvgrXstKjWNP9rHbgiyb7MiMw7_157H_-55Apt0V1FyT6G-enxSZwZ4rESrnFkt2OiPrtPxB-GO3JA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2VcgAOLAVEWX3gGpo0ztIjqqhSaHuhlXqL4rEtFaG0okXcEL_B7_EljLOUwgEkTpESW0rG9viN8-YNwKXDvUAIKSzFNQUo0vOtRLuepW1X2pKjz4VJFO4P_GjEb8feuALtMhfG0CoL35_79MxbF3cahTUbs8mkcW8I9CatkiCIQfXjNVjntHxNGYOr1y-eB23BYSnwbZqX-XMZycscOCujZOi0MsXTsnbWz_1pZc_p7MJ2ARbZdf4-e1BRaQ12ykIMrFiXNdhaURXch26UpPKFgn6Cw2yW6WembEkUmqaMcCpTRtiYmZznLP3r4-19zoqfNXTN6HeT-QGMOjfDdmQVFRMsJCC1sDyf2-i2UGoMuPYFgSuNTRfp-whZBSrhHgpseegIE6ihCrUKuYNauNpXtnYPoZpOU3UEDEWgtNBKCBs5xRSJRE-GTVrfiJIGtg5uaacYCzlxU9XiMS55Yw9xbt3YWDe2uZEhrYO17DXL5TT-aB-UQxB_mxYxefxfex7_u-cFbETDfi_udQd3J7BpnuT83FOoLp6e1RmhkIU4z2bZJwc53h4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Handwritten+pattern+recognition+for+early+Parkinson%E2%80%99s+disease+diagnosis&rft.jtitle=Pattern+recognition+letters&rft.au=Bernardo%2C+Lucas+S.&rft.au=Quezada%2C+Angeles&rft.au=Munoz%2C+Roberto&rft.au=Maia%2C+Fernanda+Martins&rft.date=2019-07-01&rft.issn=0167-8655&rft.volume=125&rft.spage=78&rft.epage=84&rft_id=info:doi/10.1016%2Fj.patrec.2019.04.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patrec_2019_04_003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon |