Ferrite Concentrating and Shielding Structure Design of Wireless Power Transmitting Coil for Inductively Coupled Capsule Robot

High permeability material, especially the ferrite, has been widely used in wireless power transfer (WPT) to enhance the power transfer efficiency (PTE). However, for the WPT system of inductively coupled capsule robot, the ferrite core is solely introduced in power receiving coil (PRC) configuratio...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical circuits and systems Vol. PP; no. 1; pp. 1 - 9
Main Authors Zhuang, Haoyu, Wang, Wei, Yan, Guozheng
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:High permeability material, especially the ferrite, has been widely used in wireless power transfer (WPT) to enhance the power transfer efficiency (PTE). However, for the WPT system of inductively coupled capsule robot, the ferrite core is solely introduced in power receiving coil (PRC) configuration to enhance the coupling. As for the power transmitting coil (PTC), very few studies focus on the ferrite structure design, and only the magnetic concentrating is taken into account without careful design. Therefore, a novel ferrite structure for PTC giving consideration to the magnetic field concentration as well as the mitigation and shielding of the leaked magnetic field is proposed in this paper. The proposed design is realized by combing the ferrite concentrating part and shielding part into a whole and providing a low reluctance closed path for magnetic induction lines, thereby improving the inductive coupling and PTE. Through analyses and simulations, the parameters of the proposed configuration are designed and optimized in terms of average magnetic flux density, uniformity, and shielding effectiveness. Prototypes of PTC with different ferrite configurations are established, tested, and compared to validate the performance enhancement. The experimental results indicate that the proposed design notably improves the average power delivered to the load from 373 mW to 822 mW and the PTE from 7.47% to 16.44%, with a relative percentage difference of 119.9%. Moreover, the power transfer stability is slightly enhanced from 91.7% to 92.8%.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1932-4545
1940-9990
DOI:10.1109/TBCAS.2023.3241194