The differential staurosporine-mediated G1 arrest in normal versus tumor cells is dependent on the retinoblastoma protein
Previously, we reported that breast cancer cells with retinoblastoma (pRb) pathway-defective checkpoints can be specifically targeted with chemotherapeutic agents, following staurosporine-mediated reversible growth inhibition in normal cells. Here we set out to determine if the kinetics of staurospo...
Saved in:
Published in | Cancer research (Chicago, Ill.) Vol. 66; no. 19; pp. 9744 - 9753 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
American Association for Cancer Research
01.10.2006
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Previously, we reported that breast cancer cells with retinoblastoma (pRb) pathway-defective checkpoints can be specifically targeted with chemotherapeutic agents, following staurosporine-mediated reversible growth inhibition in normal cells. Here we set out to determine if the kinetics of staurosporine-mediated growth inhibition is specifically targeted to the G(1) phase of cells, and if such G(1) arrest requires the activity of wild-type pRb. Normal human mammary epithelial and immortalized cells with intact pRb treated with low concentrations of staurosporine arrested in the G(1) phase of the cell cycle, whereas pRb-defective cells showed no response. The duration of G(1) and transition from G(1) to S phase entry were modulated by staurosporine in Rb-intact cells. In pRb(+) cells, but not in Rb(-) cells, low concentrations of staurosporine also resulted in a significant decrease in cyclin-dependent kinase 4 (CDK4) expression and activity. To directly assess the role of pRb in staurosporine-mediated G(1) arrest, we subjected wild-type (Rb(+/+)) and pRb(-/-) mouse embryo fibroblasts (MEFs) to staurosporine treatments. Our results show that whereas Rb(+/+) MEFs were particularly sensitive to G(1) arrest mediated by staurosporine, pRb(-/-) cells were refractory to such treatment. Additionally, CDK4 expression was also inhibited in response to staurosporine only in Rb(+/+) MEFs. These results were recapitulated in breast cancer cells treated with siRNA to pRb to down-regulate the pRb expression. Collectively, our data suggest that treatment of cells with nanomolar concentrations of staurosporine resulted in down-regulation of CDK4, which ultimately leads to G(1) arrest in normal human mammary epithelial and immortalized cells with an intact pRb pathway, but not in pRb-null/defective cells. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0008-5472 1538-7445 |
DOI: | 10.1158/0008-5472.can-06-1809 |