Complex Bioactive Chitosan–Bioglass Coatings on a New Advanced TiTaZrAg Medium–High-Entropy Alloy
High-entropy alloys (HEAs), also known as multicomponent or multi-principal element alloys (MPEAs), differ from traditional alloys, which are usually based only on one principal element, in that they are usually fabricated from five or more elements in large percentages related to each other, in the...
Saved in:
Published in | Coatings (Basel) Vol. 13; no. 5; p. 971 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
22.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | High-entropy alloys (HEAs), also known as multicomponent or multi-principal element alloys (MPEAs), differ from traditional alloys, which are usually based only on one principal element, in that they are usually fabricated from five or more elements in large percentages related to each other, in the range of 5%–35%. Despite the usually outstanding characteristics of HEAs, based on a properly selected design, many such alloys are coated with advanced composites after their elaboration to further improve their qualities. In this study, 73Ti-20Zr-5Ta-2Ag samples were covered with chitosan and a mixture of chitosan, bioglass, and ZnO particles to improve the materials’ antibacterial properties. A variety of methods, including scanning electron microscopy, atomic force microscopy, and mechanical and electrochemical determinations, has permitted a quantified comparison between the coated and uncoated surfaces of this medium–high-entropy alloy. The materials’ properties were enhanced by the complex coating, giving the alloys not only high antibacterial activity, but also good corrosion protection. |
---|---|
ISSN: | 2079-6412 2079-6412 |
DOI: | 10.3390/coatings13050971 |