Measurement Matrix Design for Compressive Sensing-Based MIMO Radar

In colocated multiple-input multiple-output (MIMO) radar using compressive sensing (CS), a receive node compresses its received signal via a linear transformation, referred to as a measurement matrix. The samples are subsequently forwarded to a fusion center, where an l 1 -optimization problem is fo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 59; no. 11; pp. 5338 - 5352
Main Authors Yao Yu, Petropulu, A. P., Poor, H. V.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.11.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In colocated multiple-input multiple-output (MIMO) radar using compressive sensing (CS), a receive node compresses its received signal via a linear transformation, referred to as a measurement matrix. The samples are subsequently forwarded to a fusion center, where an l 1 -optimization problem is formulated and solved for target information. CS-based MIMO radar exploits target sparsity in the angle-Doppler-range space and thus achieves the high localization performance of traditional MIMO radar but with significantly fewer measurements. The measurement matrix affects the recovery performance. A random Gaussian measurement matrix, typically used in CS problems, does not necessarily result in the best possible detection performance for the basis matrix corresponding to the MIMO radar scenario. This paper considers optimal measurement matrix design with the optimality criterion depending on the coherence of the sensing matrix (CSM) and/or signal-to-interference ratio (SIR). Two approaches are proposed: the first one minimizes a linear combination of CSM and the inverse SIR, and the second one imposes a structure on the measurement matrix and determines the parameters involved so that the SIR is enhanced. Depending on the transmit waveforms, the second approach can significantly improve the SIR, while maintaining a CSM comparable to that of the Gaussian random measurement matrix (GRMM). Simulations indicate that the proposed measurement matrices can improve detection accuracy as compared to a GRMM.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2011.2162328