A Novel Event Detection Model for Water Distribution Systems Based on Data-Driven Estimation and Support Vector Machine Classification
In this study, a novel event detection model based on data-driven estimation and support vector machine (SVM) classification was developed and assessed. The developed model takes advantage of the data-driven model - namely artificial neural networks (ANNs) - to predict the complicated behavior of wa...
Saved in:
Published in | Water resources management Vol. 33; no. 13; pp. 4569 - 4581 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.10.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, a novel event detection model based on data-driven estimation and support vector machine (SVM) classification was developed and assessed. The developed model takes advantage of the data-driven model - namely artificial neural networks (ANNs) - to predict the complicated behavior of water quality parameters without relevant physical and chemical knowledge. In addition, SVM presents high classification performance when dealing with high-dimensional data and has a better generalization ability than ANNs so that SVM can complement ANN predictions. Key parameters of SVM were optimized by genetic algorithm. After calculation of ANN prediction error and outlier classification by SVM, the event probability was estimated by Bayesian sequence analysis. The performance of the proposed model was evaluated using data from a real water distribution system with randomly simulated events. The results illustrated that the proposed model exhibited a great detection ability compared with two models with analogous structures, a pure SVM classification model and a conventional ANN-threshold classification model, demonstrating the superiority of the hybrid data-driven – SVM classification model. |
---|---|
AbstractList | In this study, a novel event detection model based on data-driven estimation and support vector machine (SVM) classification was developed and assessed. The developed model takes advantage of the data-driven model - namely artificial neural networks (ANNs) - to predict the complicated behavior of water quality parameters without relevant physical and chemical knowledge. In addition, SVM presents high classification performance when dealing with high-dimensional data and has a better generalization ability than ANNs so that SVM can complement ANN predictions. Key parameters of SVM were optimized by genetic algorithm. After calculation of ANN prediction error and outlier classification by SVM, the event probability was estimated by Bayesian sequence analysis. The performance of the proposed model was evaluated using data from a real water distribution system with randomly simulated events. The results illustrated that the proposed model exhibited a great detection ability compared with two models with analogous structures, a pure SVM classification model and a conventional ANN-threshold classification model, demonstrating the superiority of the hybrid data-driven – SVM classification model. |
Author | Zou, Xiang-Yun Xu, Bin Wang, An-Qi Lin, Yi-Li Zhang, Tian-Yang Gao, Nai-Yun Xia, Sheng-Ji Guo, Zi-Bo |
Author_xml | – sequence: 1 givenname: Xiang-Yun surname: Zou fullname: Zou, Xiang-Yun organization: State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai Institute of Pollution Control and Ecological Security – sequence: 2 givenname: Yi-Li surname: Lin fullname: Lin, Yi-Li organization: Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology – sequence: 3 givenname: Bin surname: Xu fullname: Xu, Bin email: tjwenwu@tongji.edu.cn organization: State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai Institute of Pollution Control and Ecological Security – sequence: 4 givenname: Zi-Bo surname: Guo fullname: Guo, Zi-Bo organization: State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University – sequence: 5 givenname: Sheng-Ji surname: Xia fullname: Xia, Sheng-Ji organization: State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University – sequence: 6 givenname: Tian-Yang surname: Zhang fullname: Zhang, Tian-Yang organization: State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai Institute of Pollution Control and Ecological Security – sequence: 7 givenname: An-Qi surname: Wang fullname: Wang, An-Qi organization: State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University – sequence: 8 givenname: Nai-Yun surname: Gao fullname: Gao, Nai-Yun organization: State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University |
BookMark | eNp9kc1u3CAYRVGVSJ2kfYGukLrpxg2_xizTmWlSKWkW6c8SYYxbIg9M-XCkvECfO8RTqVIWWSAkOOfqg3uCjmKKHqF3lHykhKgzoJS1uiG0LsapauQrtKJS8Ya2khyhFdGMNEIJ-hqdANwRUjVNVujvOf6a7v2Et_c-FrzxxbsSUsTXaainY8r4py0-402AkkM_L5e3D1D8DvAnC37A9WBji202OdQQvIUSdnbhbBzw7bzfp1zwjxpc066t-x2ix-vJAoQxuIV8g45HO4F_-28_Rd8_b7-tL5urm4sv6_OrxnHJSsMH1lo2WEsEE0NHZaeY7iVjtu87PhKvHddeKe3s4AbetqOmUjgqtFS91IKfog-H3H1Of2YPxewCOD9NNvo0g2G861QnpOAVff8MvUtzjnW6SjHKVdeyp8DuQLmcALIfjQtleVLJNkyGEvNUkDkUZGpBZinIyKqyZ-o-14_LDy9L_CBBheMvn_9P9YL1CBMPpVY |
CitedBy_id | crossref_primary_10_1016_j_ese_2022_100231 crossref_primary_10_1016_j_envres_2021_111660 crossref_primary_10_1007_s11157_021_09592_y crossref_primary_10_1016_j_asoc_2023_111160 crossref_primary_10_1016_j_jwpe_2023_103568 crossref_primary_10_1111_exsy_13425 crossref_primary_10_1016_j_scitotenv_2022_154284 crossref_primary_10_1002_wer_10718 crossref_primary_10_1039_D4EW00329B crossref_primary_10_1016_j_jclepro_2024_144171 crossref_primary_10_3390_en15134832 crossref_primary_10_3390_w13010081 crossref_primary_10_1039_D2VA00285J crossref_primary_10_1016_j_srs_2024_100152 crossref_primary_10_3390_w16243555 crossref_primary_10_1016_j_envres_2022_113843 crossref_primary_10_1016_j_jenvman_2023_119806 |
Cites_doi | 10.1016/j.watres.2015.02.016 10.1016/j.watres.2013.10.060 10.1016/j.jenvman.2015.07.026 10.1016/j.jenvman.2014.04.017 10.1016/j.watres.2015.05.013 10.1016/S0925-2312(02)00632-X 10.1016/S0888-3270(03)00020-7 10.1016/S0167-7012(00)00201-3 10.1061/(ASCE)WR.1943-5452.0001023 10.1126/science.3287615 10.1002/j.1551-8833.2007.tb07847.x 10.1016/j.jclepro.2019.01.010 10.1016/j.jenvman.2015.02.023 10.1088/0031-9155/46/6/305 10.1016/j.watres.2013.01.017 10.1088/0957-0233/24/5/055801 10.1021/ci0341161 10.1061/(ASCE)WR.1943-5452.0000081 10.1023/A:1009715923555 10.1002/j.1551-8833.2008.tb08131.x 10.1021/es3014024 10.1016/S1364-8152(99)00007-9 10.1016/S1364-8152(98)00061-9 10.1007/s11356-012-1406-y 10.1061/(ASCE)WR.1943-5452.0000983 10.1145/130385.130401 10.1061/40927(243)517 |
ContentType | Journal Article |
Copyright | Springer Nature B.V. 2019 Water Resources Management is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: Springer Nature B.V. 2019 – notice: Water Resources Management is a copyright of Springer, (2019). All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7QH 7ST 7UA 7WY 7WZ 7XB 87Z 88I 8FD 8FE 8FG 8FH 8FK 8FL ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FRNLG F~G GNUQQ H97 HCIFZ K60 K6~ KR7 L.- L.G L6V LK8 M0C M2P M7P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U SOI 7S9 L.6 |
DOI | 10.1007/s11269-019-02317-5 |
DatabaseName | CrossRef ProQuest Central (Corporate) Aqualine Environment Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Agricultural & Environmental Science Collection (NC LIVE) ProQuest Central Essentials ProQuest Biological Science Collection ProQuest Central Business Premium Collection Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ProQuest SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection ProQuest Biological Science Collection ABI/INFORM Global Science Database ProQuest Biological Science Database (NC LIVE) ProQuest Engineering Database (NC LIVE) Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Environmental Science Collection (NC LIVE) ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Biological Science Database ProQuest Business Collection Aqualine Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-1650 |
EndPage | 4581 |
ExternalDocumentID | 10_1007_s11269_019_02317_5 |
GrantInformation_xml | – fundername: Ministry of the Science and Technology in Taiwan grantid: MOST-107-2221-E-992-008-MY3 – fundername: National Major Science and Technology Project of China grantid: No. 2017ZX07207004 – fundername: National Natural Science Foundation of China (CN) grantid: 51778444; 51808222 – fundername: Fundamental Research Funds for the Central Universities (CN) grantid: 22120180123 – fundername: Shanghai Sailing Program grantid: 18YF1406000 |
GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5QI 5VS 67M 67Z 6NX 78A 7WY 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L6V L8X LAK LK5 LK8 LLZTM M0C M2P M4Y M7P M7R M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR ~02 ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7QH 7ST 7UA 7XB 8FD 8FK ABRTQ C1K F1W FR3 H97 KR7 L.- L.G PKEHL PQEST PQGLB PQUKI Q9U SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c352t-3d26a2daa0424d8158729b522abb83f0e9c39e779cadcd366f9154c14957b5943 |
IEDL.DBID | U2A |
ISSN | 0920-4741 |
IngestDate | Thu Jul 10 22:21:31 EDT 2025 Fri Jul 25 19:29:59 EDT 2025 Tue Jul 01 01:00:05 EDT 2025 Thu Apr 24 23:04:08 EDT 2025 Fri Feb 21 02:26:45 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | Support vector machine (SVM) Event detection Data-driven model Artificial neural networks (ANNs) Water distribution systems (WDS) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-3d26a2daa0424d8158729b522abb83f0e9c39e779cadcd366f9154c14957b5943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2321378624 |
PQPubID | 54174 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2388784543 proquest_journals_2321378624 crossref_citationtrail_10_1007_s11269_019_02317_5 crossref_primary_10_1007_s11269_019_02317_5 springer_journals_10_1007_s11269_019_02317_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20191000 2019-10-00 20191001 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 20191000 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An International Journal - Published for the European Water Resources Association (EWRA) |
PublicationTitle | Water resources management |
PublicationTitleAbbrev | Water Resour Manage |
PublicationYear | 2019 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Arad, Housh, Perelman, Ostfeld (CR2) 2013; 47 Wang, Xu, Lu, Zhang (CR30) 2003; 55 Liu, Che, Smith, Chang (CR18) 2015; 154 Rodriguez, Sérodes (CR26) 1998; 14 CR15 Burges (CR7) 1998; 2 Khorshidi, Nikoo, Ebrahimi, Sadegh (CR17) 2019; 214 Samanta (CR27) 2004; 18 CR11 Housh, Ostfeld (CR16) 2015; 75 Burchard-Levine, Liu, Vince, Li, Ostfeld (CR6) 2014; 143 Basheer, Hajmeer (CR3) 2000; 43 Cortes, Vapnik (CR9) 1995; 20 Hart, Murray (CR12) 2010; 136 Bazzani, Bevilacqua, Bollini, Brancaccio, Campanini, Lanconelli, Riccardi, Romani (CR4) 2001; 46 Oliker, Ostfeld (CR24) 2014; 51 Perelman, Arad, Housh, Ostfeld (CR25) 2012; 46 Maier, Dandy (CR21) 2000; 15 CR5 Byvatov, Fechner, Sadowski, Schneider (CR8) 2003; 43 CR29 Hou, Song, Zhang, Zhang, Loaiciga (CR13) 2013; 20 Swets (CR28) 1988; 240 Hall, Zaffiro, Marx, Kefauver, Radha Krishnan, Haught, Herrmann (CR10) 2007; 99 CR22 Abokifa, Haddad, Lo, Biswas (CR1) 2019; 145 Liu, Smith, Che (CR20) 2015; 80 McKenna, Wilson, Klise (CR23) 2008; 100 Liu, Che, Smith, Lei, Li (CR19) 2015; 161 Hou, He, Huang, Zhang, Loaiciga (CR14) 2013; 24 N Oliker (2317_CR24) 2014; 51 CJC Burges (2317_CR7) 1998; 2 S Liu (2317_CR19) 2015; 161 S Liu (2317_CR20) 2015; 80 SA McKenna (2317_CR23) 2008; 100 WE Hart (2317_CR12) 2010; 136 2317_CR15 M Housh (2317_CR16) 2015; 75 2317_CR11 MJ Rodriguez (2317_CR26) 1998; 14 IA Basheer (2317_CR3) 2000; 43 J Hall (2317_CR10) 2007; 99 C Cortes (2317_CR9) 1995; 20 D Hou (2317_CR13) 2013; 20 W Wang (2317_CR30) 2003; 55 2317_CR5 JA Swets (2317_CR28) 1988; 240 MS Khorshidi (2317_CR17) 2019; 214 HR Maier (2317_CR21) 2000; 15 Dibo Hou (2317_CR14) 2013; 24 A Burchard-Levine (2317_CR6) 2014; 143 2317_CR29 J Arad (2317_CR2) 2013; 47 B Samanta (2317_CR27) 2004; 18 2317_CR22 A Bazzani (2317_CR4) 2001; 46 Ahmed A. Abokifa (2317_CR1) 2019; 145 S Liu (2317_CR18) 2015; 154 E Byvatov (2317_CR8) 2003; 43 L Perelman (2317_CR25) 2012; 46 |
References_xml | – volume: 75 start-page: 210 year: 2015 end-page: 223 ident: CR16 article-title: An integrated logit model for contamination event detection in water distribution systems publication-title: Water Res doi: 10.1016/j.watres.2015.02.016 – ident: CR22 – volume: 51 start-page: 234 year: 2014 end-page: 245 ident: CR24 article-title: A coupled classification – evolutionary optimization model for contamination event detection in water distribution systems publication-title: Water Res doi: 10.1016/j.watres.2013.10.060 – volume: 161 start-page: 385 year: 2015 end-page: 391 ident: CR19 article-title: Performance evaluation for three pollution detection methods using data from a real contamination accident publication-title: J Environ Manag doi: 10.1016/j.jenvman.2015.07.026 – volume: 143 start-page: 8 year: 2014 end-page: 16 ident: CR6 article-title: A hybrid evolutionary data driven model for river water quality early warning publication-title: J Environ Manag doi: 10.1016/j.jenvman.2014.04.017 – volume: 80 start-page: 109 year: 2015 end-page: 118 ident: CR20 article-title: A multivariate based event detection method and performance comparison with two baseline methods publication-title: Water Res doi: 10.1016/j.watres.2015.05.013 – volume: 55 start-page: 643 issue: 3-4 year: 2003 end-page: 663 ident: CR30 article-title: Determination of the spread parameter in the Gaussian kernel for classification and regression publication-title: Neurocomputing doi: 10.1016/S0925-2312(02)00632-X – volume: 18 start-page: 625 issue: 3 year: 2004 end-page: 644 ident: CR27 article-title: Gear fault detection using artificial neural networks and support vector machines with genetic algorithms publication-title: Mech Syst Signal Process doi: 10.1016/S0888-3270(03)00020-7 – volume: 43 start-page: 3 issue: 1 year: 2000 end-page: 31 ident: CR3 article-title: Artificial neural networks: fundamentals, computing, design, and application publication-title: J Microbiol Methods doi: 10.1016/S0167-7012(00)00201-3 – volume: 145 start-page: 04018089 issue: 1 year: 2019 ident: CR1 article-title: Real-Time Identification of Cyber-Physical Attacks on Water Distribution Systems via Machine Learning–Based Anomaly Detection Techniques publication-title: Journal of Water Resources Planning and Management doi: 10.1061/(ASCE)WR.1943-5452.0001023 – volume: 240 start-page: 1285 issue: 4857 year: 1988 end-page: 1293 ident: CR28 article-title: Measuring the accuracy of diagnostic systems publication-title: Science doi: 10.1126/science.3287615 – volume: 99 start-page: 66 issue: 1 year: 2007 end-page: 77 ident: CR10 article-title: On-line water quality parameters as indicators of distribution system contamination publication-title: J Am Water Works Assoc doi: 10.1002/j.1551-8833.2007.tb07847.x – ident: CR29 – volume: 214 start-page: 666 year: 2019 end-page: 673 ident: CR17 article-title: A robust decision support leader-follower framework for design of contamination warning system in water distribution network publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.01.010 – volume: 154 start-page: 13 year: 2015 end-page: 21 ident: CR18 article-title: A real time method of contaminant classification using conventional water quality sensors publication-title: J Environ Manag doi: 10.1016/j.jenvman.2015.02.023 – volume: 46 start-page: 1651 issue: 6 year: 2001 end-page: 1663 ident: CR4 article-title: An SVM classifier to separate false signals from microcalcifications in digital mammograms publication-title: Phys Med Biol doi: 10.1088/0031-9155/46/6/305 – volume: 47 start-page: 1899 issue: 5 year: 2013 end-page: 1908 ident: CR2 article-title: A dynamic thresholds scheme for contaminant event detection in water distribution systems publication-title: Water Res doi: 10.1016/j.watres.2013.01.017 – volume: 24 start-page: 055801 issue: 5 year: 2013 ident: CR14 article-title: Detection of water-quality contamination events based on multi-sensor fusion using an extented Dempster–Shafer method publication-title: Measurement Science and Technology doi: 10.1088/0957-0233/24/5/055801 – ident: CR15 – volume: 20 start-page: 273 issue: 3 year: 1995 end-page: 297 ident: CR9 article-title: Support-vector networks publication-title: Mach Learn – volume: 43 start-page: 1882 issue: 6 year: 2003 end-page: 1889 ident: CR8 article-title: Comparison of support vector machine and artificial neural network Systems for Drug/nondrug classification publication-title: J Chem Inf Comput Sci doi: 10.1021/ci0341161 – volume: 136 start-page: 611 issue: 6 year: 2010 end-page: 619 ident: CR12 article-title: Review of sensor placement strategies for contamination warning systems in drinking water distribution systems publication-title: J Water Resour Plan Manag doi: 10.1061/(ASCE)WR.1943-5452.0000081 – ident: CR11 – volume: 2 start-page: 121 issue: 2 year: 1998 end-page: 167 ident: CR7 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Min Knowl Disc doi: 10.1023/A:1009715923555 – volume: 100 start-page: 74 issue: 1 year: 2008 end-page: 85 ident: CR23 article-title: Detecting changes in water quality data publication-title: J Am Water Works Assoc doi: 10.1002/j.1551-8833.2008.tb08131.x – ident: CR5 – volume: 46 start-page: 8212 issue: 15 year: 2012 end-page: 8219 ident: CR25 article-title: Event detection in water distribution systems from multivariate water quality time series publication-title: Environ Sci Technol doi: 10.1021/es3014024 – volume: 15 start-page: 101 issue: 1 year: 2000 end-page: 124 ident: CR21 article-title: Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications publication-title: Environ Model Softw doi: 10.1016/S1364-8152(99)00007-9 – volume: 14 start-page: 93 issue: 1 year: 1998 end-page: 102 ident: CR26 article-title: Assessing empirical linear and non-linear modelling of residual chlorine in urban drinking water systems publication-title: Environ Model Softw doi: 10.1016/S1364-8152(98)00061-9 – volume: 20 start-page: 4496 issue: 7 year: 2013 end-page: 4508 ident: CR13 article-title: An early warning and control system for urban, drinking water quality protection: China's experience publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-012-1406-y – volume: 214 start-page: 666 year: 2019 ident: 2317_CR17 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.01.010 – ident: 2317_CR29 doi: 10.1061/(ASCE)WR.1943-5452.0000983 – volume: 46 start-page: 8212 issue: 15 year: 2012 ident: 2317_CR25 publication-title: Environ Sci Technol doi: 10.1021/es3014024 – volume: 143 start-page: 8 year: 2014 ident: 2317_CR6 publication-title: J Environ Manag doi: 10.1016/j.jenvman.2014.04.017 – volume: 100 start-page: 74 issue: 1 year: 2008 ident: 2317_CR23 publication-title: J Am Water Works Assoc doi: 10.1002/j.1551-8833.2008.tb08131.x – volume: 99 start-page: 66 issue: 1 year: 2007 ident: 2317_CR10 publication-title: J Am Water Works Assoc doi: 10.1002/j.1551-8833.2007.tb07847.x – volume: 43 start-page: 3 issue: 1 year: 2000 ident: 2317_CR3 publication-title: J Microbiol Methods doi: 10.1016/S0167-7012(00)00201-3 – volume: 2 start-page: 121 issue: 2 year: 1998 ident: 2317_CR7 publication-title: Data Min Knowl Disc doi: 10.1023/A:1009715923555 – ident: 2317_CR22 – volume: 14 start-page: 93 issue: 1 year: 1998 ident: 2317_CR26 publication-title: Environ Model Softw doi: 10.1016/S1364-8152(98)00061-9 – volume: 145 start-page: 04018089 issue: 1 year: 2019 ident: 2317_CR1 publication-title: Journal of Water Resources Planning and Management doi: 10.1061/(ASCE)WR.1943-5452.0001023 – volume: 136 start-page: 611 issue: 6 year: 2010 ident: 2317_CR12 publication-title: J Water Resour Plan Manag doi: 10.1061/(ASCE)WR.1943-5452.0000081 – volume: 55 start-page: 643 issue: 3-4 year: 2003 ident: 2317_CR30 publication-title: Neurocomputing doi: 10.1016/S0925-2312(02)00632-X – volume: 24 start-page: 055801 issue: 5 year: 2013 ident: 2317_CR14 publication-title: Measurement Science and Technology doi: 10.1088/0957-0233/24/5/055801 – ident: 2317_CR5 doi: 10.1145/130385.130401 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 2317_CR9 publication-title: Mach Learn – volume: 161 start-page: 385 year: 2015 ident: 2317_CR19 publication-title: J Environ Manag doi: 10.1016/j.jenvman.2015.07.026 – volume: 15 start-page: 101 issue: 1 year: 2000 ident: 2317_CR21 publication-title: Environ Model Softw doi: 10.1016/S1364-8152(99)00007-9 – volume: 46 start-page: 1651 issue: 6 year: 2001 ident: 2317_CR4 publication-title: Phys Med Biol doi: 10.1088/0031-9155/46/6/305 – volume: 75 start-page: 210 year: 2015 ident: 2317_CR16 publication-title: Water Res doi: 10.1016/j.watres.2015.02.016 – volume: 240 start-page: 1285 issue: 4857 year: 1988 ident: 2317_CR28 publication-title: Science doi: 10.1126/science.3287615 – volume: 43 start-page: 1882 issue: 6 year: 2003 ident: 2317_CR8 publication-title: J Chem Inf Comput Sci doi: 10.1021/ci0341161 – volume: 154 start-page: 13 year: 2015 ident: 2317_CR18 publication-title: J Environ Manag doi: 10.1016/j.jenvman.2015.02.023 – ident: 2317_CR11 doi: 10.1061/40927(243)517 – volume: 80 start-page: 109 year: 2015 ident: 2317_CR20 publication-title: Water Res doi: 10.1016/j.watres.2015.05.013 – volume: 47 start-page: 1899 issue: 5 year: 2013 ident: 2317_CR2 publication-title: Water Res doi: 10.1016/j.watres.2013.01.017 – volume: 20 start-page: 4496 issue: 7 year: 2013 ident: 2317_CR13 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-012-1406-y – ident: 2317_CR15 – volume: 18 start-page: 625 issue: 3 year: 2004 ident: 2317_CR27 publication-title: Mech Syst Signal Process doi: 10.1016/S0888-3270(03)00020-7 – volume: 51 start-page: 234 year: 2014 ident: 2317_CR24 publication-title: Water Res doi: 10.1016/j.watres.2013.10.060 |
SSID | ssj0010090 |
Score | 2.3436327 |
Snippet | In this study, a novel event detection model based on data-driven estimation and support vector machine (SVM) classification was developed and assessed. The... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4569 |
SubjectTerms | Artificial neural networks Atmospheric Sciences Bayesian analysis Bayesian theory Civil Engineering Classification Computer simulation Data Detection Distribution Earth and Environmental Science Earth Sciences Environment Genetic algorithms Geotechnical Engineering & Applied Earth Sciences Hydrogeology Hydrology/Water Resources Mathematical models Neural networks Organic chemistry Outliers (statistics) Parameters prediction probability Probability theory sequence analysis Support vector machines Water distribution Water distribution systems Water engineering Water quality |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB6VcIFD1QdVU2g1lXorVpPY3rVPFTRBqBIRQrxuK3vtnKINhIWfwO9mxnESqFQOe9mdXUs79sw3b4AfLpZk7PSUsGVwQmnfE7aIWjjvY7SFJ4TMxckn4-L4Qv291tfZ4XaX0yqXMjEJ6jCr2Uf-izR_X5ZczvD75lbw1CiOruYRGhuwSSLYmA5sHo7Gp2erOAIhiORlsWQkKVKeuWxmUTzXHxScK0QXgZxS6JeqaY03_wmRJs1z9A7eZsiIBwsev4c3sfkA288aCX6ExwMczx7iFEecvojD2KYMqwZ51NkUCZjiFYHKOQ65T24ecYW5WzkekiYLSDeGrnViOGcBiCM6-4uyRnRNQJ7-SUgdL5OXH09SDmbENFOTs40S5Q5cHI3O_xyLPGFB1AS8WiHDoHCD4BwHQIPpa0NY2xMkI1YZOelFW0sby9LWLtRBFsXEEuSq2aoqvbZKfoJOM2viZ0DjnZW-iIS_auUs2XFGGT1RsoxM3OtCf_lzqzq3H-cpGNNq3TiZGVIRQ6rEkEp34efqnZtF841XqfeWPKvyQbyr1tumC99Xj-kIcVzENXF2zzQkaY3SSnZhf8nr9Sf-v-KX11fcha0Bb6-U-rcHnXZ-H78ShGn9t7xPnwDjLexX priority: 102 providerName: ProQuest |
Title | A Novel Event Detection Model for Water Distribution Systems Based on Data-Driven Estimation and Support Vector Machine Classification |
URI | https://link.springer.com/article/10.1007/s11269-019-02317-5 https://www.proquest.com/docview/2321378624 https://www.proquest.com/docview/2388784543 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED7R7WU8TAw2URjVIfHGLLWxncSPHU07gVohRLfuKbIT96lKUZftJ_C7uXOTFtCGxEMUKbkkUs72fef77g7gg_UJOTt9JUxSWqG06wsTey2sc96b2BFC5uTk6Sy-mqvPC71oksLuWrZ7G5IMK_U-2W0QxcztoYNASSJ0Bw41-e5M5JpHw13sgFBD2Fkx5BgpMphNqszj7_jTHO0x5l9h0WBtxi_guIGJONzq9QSe-eolPP-teOAr-DnE2frBrzBjyiKOfB1YVRVye7MVEhjFGwKSGxxxbdymrRU2FcrxkqxXiXRhZGsrRhte9DCj-b5NZURblcgdPwmd43XY2cdp4F16DH00mWEUJE9hPs6-f7oSTVcFURDYqoUso9hGpbUc9CzTgU4JXzuCYaSeVC773hTS-CQxhS2LUsbx0hDMKtiTSpw2Sp7BQbWu_GvA1FkjXewJcxXKGvLdUpXqpZKJZ-F-Fwbtz82LpuQ4d75Y5ftiyayQnBSSB4Xkugsfd8_82Bbc-Kf0eauzvJl8dzmBxIFMOPOlC-93t2nacCzEVn59zzK0uqZKK9mFi1bX-1c8_cU3_yf-Fo4iHm6B_ncOB_Xm3r8jGFO7HnTS8aQHh8PJ7ZeMzpfZ7Ou3XhjLvwBtzuv8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NctMwEN4p5QA9MPwOaQssM3ACDYkl2daBYQpOSGmTUwu9GclWThmnTV06fQEeh2dkV7YTYIbeevDFlmWPdrX7rfYP4JX1CRk7fSVMUlqhtOsLE3strHPem9gRQubk5Mk0Hh-rLyf6ZAN-dbkwHFbZycQgqMtFwWfk70jzD2TC6QwfTs8Ed41i72rXQqNhiwN_dUkm2_n7_Yzo-zqKRsOjT2PRdhUQBYGNWsgyim1UWstOvzId6JTwpSMYQr-Xylnfm0IanySmsGVRyjieGYIZBVsSidNGSZr3FtxWkjQ5Z6aPPq-8FoRXwpmOIZNMkapuk3SaVL1BFHNkEl0EqRKh_1aEa3T7j0M26LnRfbjXAlTcazjqAWz46iFs_VG28BH83MPp4oef45CDJTHzdYjnqpAbq82RYDB-Iwi7xIyr8rYNtbCtjY4fSW-WSDcyW1uRLVnc4pAkTZNEibYqkXuNkl2AX4NPASch4tNj6ODJsU1h5GM4vpGVfwKb1aLyTwFTZ410sSe0VyhryGpMVapnSiaeB_d7MOgWNy_aYufcc2Oer8s0M0FyIkgeCJLrHrxZvXPalPq4dvRuR7O83fbn-ZpJe_By9Zg2LHthbOUXFzyG5HqqtJI9eNvRej3F_7-4ff0XX8Cd8dHkMD_cnx7swN2IWS0EHe7CZr288M8IPNXueeBYhO83vUV-AxRUJv4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrYTggPgVC6UMEpzA6m5ix_GhQm2zq5bSVYUo9JY6ife0ypZtCuIFeKg-HTOOswtI9NZDLonjRJ7xzDeeP4DX1mkydgZSGF1ZIVUxECZxStiicM4kBSFkTk4-miT7J_LDqTpdg6suF4bDKjuZ6AV1NS_5jHyLNP8w1pzOsDUNYRHH2fj9-TfBHaTY09q102hZ5ND9_EHm28X2QUa0fhNF49HnvX0ROgyIkoBHI-IqSmxUWcsOwCodqpSwZkGQhH41jacDZ8rYOK1NaauyipNkaghylGxV6EIZGdO8t2Bds1XUg_Xd0eT409KHQejFn_AYMtAkKe6QstMm7g2jhOOU6CKApYX6Wy2usO4_7lmv9cb34V6Aq7jT8tcDWHP1Q7j7RxHDR_BrByfz726GIw6dxMw1PrqrRm6zNkMCxfiVAO0CM67RG9prYaiUjrukRSukG5ltrMgWLHxxRHKnTalEW1fInUfJSsAv3sOARz7-06Hv58mRTn7kYzi5kbV_Ar16XrungGlhTVwkjrBfKa0hGzKVqZrKWDsePOjDsFvcvAylz7kDxyxfFW1mguREkNwTJFd9eLt857wt_HHt6I2OZnkQAhf5imX78Gr5mLYv-2Rs7eaXPIakfCqVjPvwrqP1aor_f_HZ9V98Cbdpe-QfDyaHz-FOxJzmIxA3oNcsLt0LQlJNsRlYFuHspnfJb_hlLJA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Event+Detection+Model+for+Water+Distribution+Systems+Based+on+Data-Driven+Estimation+and+Support+Vector+Machine+Classification&rft.jtitle=Water+resources+management&rft.au=Zou%2C+Xiang-Yun&rft.au=Lin%2C+Yi-Li&rft.au=Xu%2C+Bin&rft.au=Guo%2C+Zi-Bo&rft.date=2019-10-01&rft.pub=Springer+Netherlands&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=33&rft.issue=13&rft.spage=4569&rft.epage=4581&rft_id=info:doi/10.1007%2Fs11269-019-02317-5&rft.externalDocID=10_1007_s11269_019_02317_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon |