A Novel Event Detection Model for Water Distribution Systems Based on Data-Driven Estimation and Support Vector Machine Classification

In this study, a novel event detection model based on data-driven estimation and support vector machine (SVM) classification was developed and assessed. The developed model takes advantage of the data-driven model - namely artificial neural networks (ANNs) - to predict the complicated behavior of wa...

Full description

Saved in:
Bibliographic Details
Published inWater resources management Vol. 33; no. 13; pp. 4569 - 4581
Main Authors Zou, Xiang-Yun, Lin, Yi-Li, Xu, Bin, Guo, Zi-Bo, Xia, Sheng-Ji, Zhang, Tian-Yang, Wang, An-Qi, Gao, Nai-Yun
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.10.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, a novel event detection model based on data-driven estimation and support vector machine (SVM) classification was developed and assessed. The developed model takes advantage of the data-driven model - namely artificial neural networks (ANNs) - to predict the complicated behavior of water quality parameters without relevant physical and chemical knowledge. In addition, SVM presents high classification performance when dealing with high-dimensional data and has a better generalization ability than ANNs so that SVM can complement ANN predictions. Key parameters of SVM were optimized by genetic algorithm. After calculation of ANN prediction error and outlier classification by SVM, the event probability was estimated by Bayesian sequence analysis. The performance of the proposed model was evaluated using data from a real water distribution system with randomly simulated events. The results illustrated that the proposed model exhibited a great detection ability compared with two models with analogous structures, a pure SVM classification model and a conventional ANN-threshold classification model, demonstrating the superiority of the hybrid data-driven – SVM classification model.
AbstractList In this study, a novel event detection model based on data-driven estimation and support vector machine (SVM) classification was developed and assessed. The developed model takes advantage of the data-driven model - namely artificial neural networks (ANNs) - to predict the complicated behavior of water quality parameters without relevant physical and chemical knowledge. In addition, SVM presents high classification performance when dealing with high-dimensional data and has a better generalization ability than ANNs so that SVM can complement ANN predictions. Key parameters of SVM were optimized by genetic algorithm. After calculation of ANN prediction error and outlier classification by SVM, the event probability was estimated by Bayesian sequence analysis. The performance of the proposed model was evaluated using data from a real water distribution system with randomly simulated events. The results illustrated that the proposed model exhibited a great detection ability compared with two models with analogous structures, a pure SVM classification model and a conventional ANN-threshold classification model, demonstrating the superiority of the hybrid data-driven – SVM classification model.
Author Zou, Xiang-Yun
Xu, Bin
Wang, An-Qi
Lin, Yi-Li
Zhang, Tian-Yang
Gao, Nai-Yun
Xia, Sheng-Ji
Guo, Zi-Bo
Author_xml – sequence: 1
  givenname: Xiang-Yun
  surname: Zou
  fullname: Zou, Xiang-Yun
  organization: State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai Institute of Pollution Control and Ecological Security
– sequence: 2
  givenname: Yi-Li
  surname: Lin
  fullname: Lin, Yi-Li
  organization: Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology
– sequence: 3
  givenname: Bin
  surname: Xu
  fullname: Xu, Bin
  email: tjwenwu@tongji.edu.cn
  organization: State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai Institute of Pollution Control and Ecological Security
– sequence: 4
  givenname: Zi-Bo
  surname: Guo
  fullname: Guo, Zi-Bo
  organization: State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University
– sequence: 5
  givenname: Sheng-Ji
  surname: Xia
  fullname: Xia, Sheng-Ji
  organization: State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University
– sequence: 6
  givenname: Tian-Yang
  surname: Zhang
  fullname: Zhang, Tian-Yang
  organization: State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai Institute of Pollution Control and Ecological Security
– sequence: 7
  givenname: An-Qi
  surname: Wang
  fullname: Wang, An-Qi
  organization: State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University
– sequence: 8
  givenname: Nai-Yun
  surname: Gao
  fullname: Gao, Nai-Yun
  organization: State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University
BookMark eNp9kc1u3CAYRVGVSJ2kfYGukLrpxg2_xizTmWlSKWkW6c8SYYxbIg9M-XCkvECfO8RTqVIWWSAkOOfqg3uCjmKKHqF3lHykhKgzoJS1uiG0LsapauQrtKJS8Ya2khyhFdGMNEIJ-hqdANwRUjVNVujvOf6a7v2Et_c-FrzxxbsSUsTXaainY8r4py0-402AkkM_L5e3D1D8DvAnC37A9WBji202OdQQvIUSdnbhbBzw7bzfp1zwjxpc066t-x2ix-vJAoQxuIV8g45HO4F_-28_Rd8_b7-tL5urm4sv6_OrxnHJSsMH1lo2WEsEE0NHZaeY7iVjtu87PhKvHddeKe3s4AbetqOmUjgqtFS91IKfog-H3H1Of2YPxewCOD9NNvo0g2G861QnpOAVff8MvUtzjnW6SjHKVdeyp8DuQLmcALIfjQtleVLJNkyGEvNUkDkUZGpBZinIyKqyZ-o-14_LDy9L_CBBheMvn_9P9YL1CBMPpVY
CitedBy_id crossref_primary_10_1016_j_ese_2022_100231
crossref_primary_10_1016_j_envres_2021_111660
crossref_primary_10_1007_s11157_021_09592_y
crossref_primary_10_1016_j_asoc_2023_111160
crossref_primary_10_1016_j_jwpe_2023_103568
crossref_primary_10_1111_exsy_13425
crossref_primary_10_1016_j_scitotenv_2022_154284
crossref_primary_10_1002_wer_10718
crossref_primary_10_1039_D4EW00329B
crossref_primary_10_1016_j_jclepro_2024_144171
crossref_primary_10_3390_en15134832
crossref_primary_10_3390_w13010081
crossref_primary_10_1039_D2VA00285J
crossref_primary_10_1016_j_srs_2024_100152
crossref_primary_10_3390_w16243555
crossref_primary_10_1016_j_envres_2022_113843
crossref_primary_10_1016_j_jenvman_2023_119806
Cites_doi 10.1016/j.watres.2015.02.016
10.1016/j.watres.2013.10.060
10.1016/j.jenvman.2015.07.026
10.1016/j.jenvman.2014.04.017
10.1016/j.watres.2015.05.013
10.1016/S0925-2312(02)00632-X
10.1016/S0888-3270(03)00020-7
10.1016/S0167-7012(00)00201-3
10.1061/(ASCE)WR.1943-5452.0001023
10.1126/science.3287615
10.1002/j.1551-8833.2007.tb07847.x
10.1016/j.jclepro.2019.01.010
10.1016/j.jenvman.2015.02.023
10.1088/0031-9155/46/6/305
10.1016/j.watres.2013.01.017
10.1088/0957-0233/24/5/055801
10.1021/ci0341161
10.1061/(ASCE)WR.1943-5452.0000081
10.1023/A:1009715923555
10.1002/j.1551-8833.2008.tb08131.x
10.1021/es3014024
10.1016/S1364-8152(99)00007-9
10.1016/S1364-8152(98)00061-9
10.1007/s11356-012-1406-y
10.1061/(ASCE)WR.1943-5452.0000983
10.1145/130385.130401
10.1061/40927(243)517
ContentType Journal Article
Copyright Springer Nature B.V. 2019
Water Resources Management is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Nature B.V. 2019
– notice: Water Resources Management is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7QH
7ST
7UA
7WY
7WZ
7XB
87Z
88I
8FD
8FE
8FG
8FH
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
FRNLG
F~G
GNUQQ
H97
HCIFZ
K60
K6~
KR7
L.-
L.G
L6V
LK8
M0C
M2P
M7P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s11269-019-02317-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Aqualine
Environment Abstracts
Water Resources Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Agricultural & Environmental Science Collection (NC LIVE)
ProQuest Central Essentials
ProQuest Biological Science Collection
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ProQuest SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
ProQuest Biological Science Collection
ABI/INFORM Global
Science Database
ProQuest Biological Science Database (NC LIVE)
ProQuest Engineering Database (NC LIVE)
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Environmental Science Collection (NC LIVE)
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Biological Science Database
ProQuest Business Collection
Aqualine
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-1650
EndPage 4581
ExternalDocumentID 10_1007_s11269_019_02317_5
GrantInformation_xml – fundername: Ministry of the Science and Technology in Taiwan
  grantid: MOST-107-2221-E-992-008-MY3
– fundername: National Major Science and Technology Project of China
  grantid: No. 2017ZX07207004
– fundername: National Natural Science Foundation of China (CN)
  grantid: 51778444; 51808222
– fundername: Fundamental Research Funds for the Central Universities (CN)
  grantid: 22120180123
– fundername: Shanghai Sailing Program
  grantid: 18YF1406000
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5QI
5VS
67M
67Z
6NX
78A
7WY
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
L6V
L8X
LAK
LK5
LK8
LLZTM
M0C
M2P
M4Y
M7P
M7R
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PCBAR
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
~02
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7QH
7ST
7UA
7XB
8FD
8FK
ABRTQ
C1K
F1W
FR3
H97
KR7
L.-
L.G
PKEHL
PQEST
PQGLB
PQUKI
Q9U
SOI
7S9
L.6
ID FETCH-LOGICAL-c352t-3d26a2daa0424d8158729b522abb83f0e9c39e779cadcd366f9154c14957b5943
IEDL.DBID U2A
ISSN 0920-4741
IngestDate Thu Jul 10 22:21:31 EDT 2025
Fri Jul 25 19:29:59 EDT 2025
Tue Jul 01 01:00:05 EDT 2025
Thu Apr 24 23:04:08 EDT 2025
Fri Feb 21 02:26:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Support vector machine (SVM)
Event detection
Data-driven model
Artificial neural networks (ANNs)
Water distribution systems (WDS)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-3d26a2daa0424d8158729b522abb83f0e9c39e779cadcd366f9154c14957b5943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2321378624
PQPubID 54174
PageCount 13
ParticipantIDs proquest_miscellaneous_2388784543
proquest_journals_2321378624
crossref_citationtrail_10_1007_s11269_019_02317_5
crossref_primary_10_1007_s11269_019_02317_5
springer_journals_10_1007_s11269_019_02317_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191000
2019-10-00
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 20191000
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal - Published for the European Water Resources Association (EWRA)
PublicationTitle Water resources management
PublicationTitleAbbrev Water Resour Manage
PublicationYear 2019
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Arad, Housh, Perelman, Ostfeld (CR2) 2013; 47
Wang, Xu, Lu, Zhang (CR30) 2003; 55
Liu, Che, Smith, Chang (CR18) 2015; 154
Rodriguez, Sérodes (CR26) 1998; 14
CR15
Burges (CR7) 1998; 2
Khorshidi, Nikoo, Ebrahimi, Sadegh (CR17) 2019; 214
Samanta (CR27) 2004; 18
CR11
Housh, Ostfeld (CR16) 2015; 75
Burchard-Levine, Liu, Vince, Li, Ostfeld (CR6) 2014; 143
Basheer, Hajmeer (CR3) 2000; 43
Cortes, Vapnik (CR9) 1995; 20
Hart, Murray (CR12) 2010; 136
Bazzani, Bevilacqua, Bollini, Brancaccio, Campanini, Lanconelli, Riccardi, Romani (CR4) 2001; 46
Oliker, Ostfeld (CR24) 2014; 51
Perelman, Arad, Housh, Ostfeld (CR25) 2012; 46
Maier, Dandy (CR21) 2000; 15
CR5
Byvatov, Fechner, Sadowski, Schneider (CR8) 2003; 43
CR29
Hou, Song, Zhang, Zhang, Loaiciga (CR13) 2013; 20
Swets (CR28) 1988; 240
Hall, Zaffiro, Marx, Kefauver, Radha Krishnan, Haught, Herrmann (CR10) 2007; 99
CR22
Abokifa, Haddad, Lo, Biswas (CR1) 2019; 145
Liu, Smith, Che (CR20) 2015; 80
McKenna, Wilson, Klise (CR23) 2008; 100
Liu, Che, Smith, Lei, Li (CR19) 2015; 161
Hou, He, Huang, Zhang, Loaiciga (CR14) 2013; 24
N Oliker (2317_CR24) 2014; 51
CJC Burges (2317_CR7) 1998; 2
S Liu (2317_CR19) 2015; 161
S Liu (2317_CR20) 2015; 80
SA McKenna (2317_CR23) 2008; 100
WE Hart (2317_CR12) 2010; 136
2317_CR15
M Housh (2317_CR16) 2015; 75
2317_CR11
MJ Rodriguez (2317_CR26) 1998; 14
IA Basheer (2317_CR3) 2000; 43
J Hall (2317_CR10) 2007; 99
C Cortes (2317_CR9) 1995; 20
D Hou (2317_CR13) 2013; 20
W Wang (2317_CR30) 2003; 55
2317_CR5
JA Swets (2317_CR28) 1988; 240
MS Khorshidi (2317_CR17) 2019; 214
HR Maier (2317_CR21) 2000; 15
Dibo Hou (2317_CR14) 2013; 24
A Burchard-Levine (2317_CR6) 2014; 143
2317_CR29
J Arad (2317_CR2) 2013; 47
B Samanta (2317_CR27) 2004; 18
2317_CR22
A Bazzani (2317_CR4) 2001; 46
Ahmed A. Abokifa (2317_CR1) 2019; 145
S Liu (2317_CR18) 2015; 154
E Byvatov (2317_CR8) 2003; 43
L Perelman (2317_CR25) 2012; 46
References_xml – volume: 75
  start-page: 210
  year: 2015
  end-page: 223
  ident: CR16
  article-title: An integrated logit model for contamination event detection in water distribution systems
  publication-title: Water Res
  doi: 10.1016/j.watres.2015.02.016
– ident: CR22
– volume: 51
  start-page: 234
  year: 2014
  end-page: 245
  ident: CR24
  article-title: A coupled classification – evolutionary optimization model for contamination event detection in water distribution systems
  publication-title: Water Res
  doi: 10.1016/j.watres.2013.10.060
– volume: 161
  start-page: 385
  year: 2015
  end-page: 391
  ident: CR19
  article-title: Performance evaluation for three pollution detection methods using data from a real contamination accident
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2015.07.026
– volume: 143
  start-page: 8
  year: 2014
  end-page: 16
  ident: CR6
  article-title: A hybrid evolutionary data driven model for river water quality early warning
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2014.04.017
– volume: 80
  start-page: 109
  year: 2015
  end-page: 118
  ident: CR20
  article-title: A multivariate based event detection method and performance comparison with two baseline methods
  publication-title: Water Res
  doi: 10.1016/j.watres.2015.05.013
– volume: 55
  start-page: 643
  issue: 3-4
  year: 2003
  end-page: 663
  ident: CR30
  article-title: Determination of the spread parameter in the Gaussian kernel for classification and regression
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(02)00632-X
– volume: 18
  start-page: 625
  issue: 3
  year: 2004
  end-page: 644
  ident: CR27
  article-title: Gear fault detection using artificial neural networks and support vector machines with genetic algorithms
  publication-title: Mech Syst Signal Process
  doi: 10.1016/S0888-3270(03)00020-7
– volume: 43
  start-page: 3
  issue: 1
  year: 2000
  end-page: 31
  ident: CR3
  article-title: Artificial neural networks: fundamentals, computing, design, and application
  publication-title: J Microbiol Methods
  doi: 10.1016/S0167-7012(00)00201-3
– volume: 145
  start-page: 04018089
  issue: 1
  year: 2019
  ident: CR1
  article-title: Real-Time Identification of Cyber-Physical Attacks on Water Distribution Systems via Machine Learning–Based Anomaly Detection Techniques
  publication-title: Journal of Water Resources Planning and Management
  doi: 10.1061/(ASCE)WR.1943-5452.0001023
– volume: 240
  start-page: 1285
  issue: 4857
  year: 1988
  end-page: 1293
  ident: CR28
  article-title: Measuring the accuracy of diagnostic systems
  publication-title: Science
  doi: 10.1126/science.3287615
– volume: 99
  start-page: 66
  issue: 1
  year: 2007
  end-page: 77
  ident: CR10
  article-title: On-line water quality parameters as indicators of distribution system contamination
  publication-title: J Am Water Works Assoc
  doi: 10.1002/j.1551-8833.2007.tb07847.x
– ident: CR29
– volume: 214
  start-page: 666
  year: 2019
  end-page: 673
  ident: CR17
  article-title: A robust decision support leader-follower framework for design of contamination warning system in water distribution network
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.01.010
– volume: 154
  start-page: 13
  year: 2015
  end-page: 21
  ident: CR18
  article-title: A real time method of contaminant classification using conventional water quality sensors
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2015.02.023
– volume: 46
  start-page: 1651
  issue: 6
  year: 2001
  end-page: 1663
  ident: CR4
  article-title: An SVM classifier to separate false signals from microcalcifications in digital mammograms
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/46/6/305
– volume: 47
  start-page: 1899
  issue: 5
  year: 2013
  end-page: 1908
  ident: CR2
  article-title: A dynamic thresholds scheme for contaminant event detection in water distribution systems
  publication-title: Water Res
  doi: 10.1016/j.watres.2013.01.017
– volume: 24
  start-page: 055801
  issue: 5
  year: 2013
  ident: CR14
  article-title: Detection of water-quality contamination events based on multi-sensor fusion using an extented Dempster–Shafer method
  publication-title: Measurement Science and Technology
  doi: 10.1088/0957-0233/24/5/055801
– ident: CR15
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  end-page: 297
  ident: CR9
  article-title: Support-vector networks
  publication-title: Mach Learn
– volume: 43
  start-page: 1882
  issue: 6
  year: 2003
  end-page: 1889
  ident: CR8
  article-title: Comparison of support vector machine and artificial neural network Systems for Drug/nondrug classification
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci0341161
– volume: 136
  start-page: 611
  issue: 6
  year: 2010
  end-page: 619
  ident: CR12
  article-title: Review of sensor placement strategies for contamination warning systems in drinking water distribution systems
  publication-title: J Water Resour Plan Manag
  doi: 10.1061/(ASCE)WR.1943-5452.0000081
– ident: CR11
– volume: 2
  start-page: 121
  issue: 2
  year: 1998
  end-page: 167
  ident: CR7
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Min Knowl Disc
  doi: 10.1023/A:1009715923555
– volume: 100
  start-page: 74
  issue: 1
  year: 2008
  end-page: 85
  ident: CR23
  article-title: Detecting changes in water quality data
  publication-title: J Am Water Works Assoc
  doi: 10.1002/j.1551-8833.2008.tb08131.x
– ident: CR5
– volume: 46
  start-page: 8212
  issue: 15
  year: 2012
  end-page: 8219
  ident: CR25
  article-title: Event detection in water distribution systems from multivariate water quality time series
  publication-title: Environ Sci Technol
  doi: 10.1021/es3014024
– volume: 15
  start-page: 101
  issue: 1
  year: 2000
  end-page: 124
  ident: CR21
  article-title: Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
  publication-title: Environ Model Softw
  doi: 10.1016/S1364-8152(99)00007-9
– volume: 14
  start-page: 93
  issue: 1
  year: 1998
  end-page: 102
  ident: CR26
  article-title: Assessing empirical linear and non-linear modelling of residual chlorine in urban drinking water systems
  publication-title: Environ Model Softw
  doi: 10.1016/S1364-8152(98)00061-9
– volume: 20
  start-page: 4496
  issue: 7
  year: 2013
  end-page: 4508
  ident: CR13
  article-title: An early warning and control system for urban, drinking water quality protection: China's experience
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-012-1406-y
– volume: 214
  start-page: 666
  year: 2019
  ident: 2317_CR17
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.01.010
– ident: 2317_CR29
  doi: 10.1061/(ASCE)WR.1943-5452.0000983
– volume: 46
  start-page: 8212
  issue: 15
  year: 2012
  ident: 2317_CR25
  publication-title: Environ Sci Technol
  doi: 10.1021/es3014024
– volume: 143
  start-page: 8
  year: 2014
  ident: 2317_CR6
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2014.04.017
– volume: 100
  start-page: 74
  issue: 1
  year: 2008
  ident: 2317_CR23
  publication-title: J Am Water Works Assoc
  doi: 10.1002/j.1551-8833.2008.tb08131.x
– volume: 99
  start-page: 66
  issue: 1
  year: 2007
  ident: 2317_CR10
  publication-title: J Am Water Works Assoc
  doi: 10.1002/j.1551-8833.2007.tb07847.x
– volume: 43
  start-page: 3
  issue: 1
  year: 2000
  ident: 2317_CR3
  publication-title: J Microbiol Methods
  doi: 10.1016/S0167-7012(00)00201-3
– volume: 2
  start-page: 121
  issue: 2
  year: 1998
  ident: 2317_CR7
  publication-title: Data Min Knowl Disc
  doi: 10.1023/A:1009715923555
– ident: 2317_CR22
– volume: 14
  start-page: 93
  issue: 1
  year: 1998
  ident: 2317_CR26
  publication-title: Environ Model Softw
  doi: 10.1016/S1364-8152(98)00061-9
– volume: 145
  start-page: 04018089
  issue: 1
  year: 2019
  ident: 2317_CR1
  publication-title: Journal of Water Resources Planning and Management
  doi: 10.1061/(ASCE)WR.1943-5452.0001023
– volume: 136
  start-page: 611
  issue: 6
  year: 2010
  ident: 2317_CR12
  publication-title: J Water Resour Plan Manag
  doi: 10.1061/(ASCE)WR.1943-5452.0000081
– volume: 55
  start-page: 643
  issue: 3-4
  year: 2003
  ident: 2317_CR30
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(02)00632-X
– volume: 24
  start-page: 055801
  issue: 5
  year: 2013
  ident: 2317_CR14
  publication-title: Measurement Science and Technology
  doi: 10.1088/0957-0233/24/5/055801
– ident: 2317_CR5
  doi: 10.1145/130385.130401
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 2317_CR9
  publication-title: Mach Learn
– volume: 161
  start-page: 385
  year: 2015
  ident: 2317_CR19
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2015.07.026
– volume: 15
  start-page: 101
  issue: 1
  year: 2000
  ident: 2317_CR21
  publication-title: Environ Model Softw
  doi: 10.1016/S1364-8152(99)00007-9
– volume: 46
  start-page: 1651
  issue: 6
  year: 2001
  ident: 2317_CR4
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/46/6/305
– volume: 75
  start-page: 210
  year: 2015
  ident: 2317_CR16
  publication-title: Water Res
  doi: 10.1016/j.watres.2015.02.016
– volume: 240
  start-page: 1285
  issue: 4857
  year: 1988
  ident: 2317_CR28
  publication-title: Science
  doi: 10.1126/science.3287615
– volume: 43
  start-page: 1882
  issue: 6
  year: 2003
  ident: 2317_CR8
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci0341161
– volume: 154
  start-page: 13
  year: 2015
  ident: 2317_CR18
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2015.02.023
– ident: 2317_CR11
  doi: 10.1061/40927(243)517
– volume: 80
  start-page: 109
  year: 2015
  ident: 2317_CR20
  publication-title: Water Res
  doi: 10.1016/j.watres.2015.05.013
– volume: 47
  start-page: 1899
  issue: 5
  year: 2013
  ident: 2317_CR2
  publication-title: Water Res
  doi: 10.1016/j.watres.2013.01.017
– volume: 20
  start-page: 4496
  issue: 7
  year: 2013
  ident: 2317_CR13
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-012-1406-y
– ident: 2317_CR15
– volume: 18
  start-page: 625
  issue: 3
  year: 2004
  ident: 2317_CR27
  publication-title: Mech Syst Signal Process
  doi: 10.1016/S0888-3270(03)00020-7
– volume: 51
  start-page: 234
  year: 2014
  ident: 2317_CR24
  publication-title: Water Res
  doi: 10.1016/j.watres.2013.10.060
SSID ssj0010090
Score 2.3436327
Snippet In this study, a novel event detection model based on data-driven estimation and support vector machine (SVM) classification was developed and assessed. The...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4569
SubjectTerms Artificial neural networks
Atmospheric Sciences
Bayesian analysis
Bayesian theory
Civil Engineering
Classification
Computer simulation
Data
Detection
Distribution
Earth and Environmental Science
Earth Sciences
Environment
Genetic algorithms
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Hydrology/Water Resources
Mathematical models
Neural networks
Organic chemistry
Outliers (statistics)
Parameters
prediction
probability
Probability theory
sequence analysis
Support vector machines
Water distribution
Water distribution systems
Water engineering
Water quality
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB6VcIFD1QdVU2g1lXorVpPY3rVPFTRBqBIRQrxuK3vtnKINhIWfwO9mxnESqFQOe9mdXUs79sw3b4AfLpZk7PSUsGVwQmnfE7aIWjjvY7SFJ4TMxckn4-L4Qv291tfZ4XaX0yqXMjEJ6jCr2Uf-izR_X5ZczvD75lbw1CiOruYRGhuwSSLYmA5sHo7Gp2erOAIhiORlsWQkKVKeuWxmUTzXHxScK0QXgZxS6JeqaY03_wmRJs1z9A7eZsiIBwsev4c3sfkA288aCX6ExwMczx7iFEecvojD2KYMqwZ51NkUCZjiFYHKOQ65T24ecYW5WzkekiYLSDeGrnViOGcBiCM6-4uyRnRNQJ7-SUgdL5OXH09SDmbENFOTs40S5Q5cHI3O_xyLPGFB1AS8WiHDoHCD4BwHQIPpa0NY2xMkI1YZOelFW0sby9LWLtRBFsXEEuSq2aoqvbZKfoJOM2viZ0DjnZW-iIS_auUs2XFGGT1RsoxM3OtCf_lzqzq3H-cpGNNq3TiZGVIRQ6rEkEp34efqnZtF841XqfeWPKvyQbyr1tumC99Xj-kIcVzENXF2zzQkaY3SSnZhf8nr9Sf-v-KX11fcha0Bb6-U-rcHnXZ-H78ShGn9t7xPnwDjLexX
  priority: 102
  providerName: ProQuest
Title A Novel Event Detection Model for Water Distribution Systems Based on Data-Driven Estimation and Support Vector Machine Classification
URI https://link.springer.com/article/10.1007/s11269-019-02317-5
https://www.proquest.com/docview/2321378624
https://www.proquest.com/docview/2388784543
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED7R7WU8TAw2URjVIfHGLLWxncSPHU07gVohRLfuKbIT96lKUZftJ_C7uXOTFtCGxEMUKbkkUs72fef77g7gg_UJOTt9JUxSWqG06wsTey2sc96b2BFC5uTk6Sy-mqvPC71oksLuWrZ7G5IMK_U-2W0QxcztoYNASSJ0Bw41-e5M5JpHw13sgFBD2Fkx5BgpMphNqszj7_jTHO0x5l9h0WBtxi_guIGJONzq9QSe-eolPP-teOAr-DnE2frBrzBjyiKOfB1YVRVye7MVEhjFGwKSGxxxbdymrRU2FcrxkqxXiXRhZGsrRhte9DCj-b5NZURblcgdPwmd43XY2cdp4F16DH00mWEUJE9hPs6-f7oSTVcFURDYqoUso9hGpbUc9CzTgU4JXzuCYaSeVC773hTS-CQxhS2LUsbx0hDMKtiTSpw2Sp7BQbWu_GvA1FkjXewJcxXKGvLdUpXqpZKJZ-F-Fwbtz82LpuQ4d75Y5ftiyayQnBSSB4Xkugsfd8_82Bbc-Kf0eauzvJl8dzmBxIFMOPOlC-93t2nacCzEVn59zzK0uqZKK9mFi1bX-1c8_cU3_yf-Fo4iHm6B_ncOB_Xm3r8jGFO7HnTS8aQHh8PJ7ZeMzpfZ7Ou3XhjLvwBtzuv8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NctMwEN4p5QA9MPwOaQssM3ACDYkl2daBYQpOSGmTUwu9GclWThmnTV06fQEeh2dkV7YTYIbeevDFlmWPdrX7rfYP4JX1CRk7fSVMUlqhtOsLE3strHPem9gRQubk5Mk0Hh-rLyf6ZAN-dbkwHFbZycQgqMtFwWfk70jzD2TC6QwfTs8Ed41i72rXQqNhiwN_dUkm2_n7_Yzo-zqKRsOjT2PRdhUQBYGNWsgyim1UWstOvzId6JTwpSMYQr-Xylnfm0IanySmsGVRyjieGYIZBVsSidNGSZr3FtxWkjQ5Z6aPPq-8FoRXwpmOIZNMkapuk3SaVL1BFHNkEl0EqRKh_1aEa3T7j0M26LnRfbjXAlTcazjqAWz46iFs_VG28BH83MPp4oef45CDJTHzdYjnqpAbq82RYDB-Iwi7xIyr8rYNtbCtjY4fSW-WSDcyW1uRLVnc4pAkTZNEibYqkXuNkl2AX4NPASch4tNj6ODJsU1h5GM4vpGVfwKb1aLyTwFTZ410sSe0VyhryGpMVapnSiaeB_d7MOgWNy_aYufcc2Oer8s0M0FyIkgeCJLrHrxZvXPalPq4dvRuR7O83fbn-ZpJe_By9Zg2LHthbOUXFzyG5HqqtJI9eNvRej3F_7-4ff0XX8Cd8dHkMD_cnx7swN2IWS0EHe7CZr288M8IPNXueeBYhO83vUV-AxRUJv4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrYTggPgVC6UMEpzA6m5ix_GhQm2zq5bSVYUo9JY6ife0ypZtCuIFeKg-HTOOswtI9NZDLonjRJ7xzDeeP4DX1mkydgZSGF1ZIVUxECZxStiicM4kBSFkTk4-miT7J_LDqTpdg6suF4bDKjuZ6AV1NS_5jHyLNP8w1pzOsDUNYRHH2fj9-TfBHaTY09q102hZ5ND9_EHm28X2QUa0fhNF49HnvX0ROgyIkoBHI-IqSmxUWcsOwCodqpSwZkGQhH41jacDZ8rYOK1NaauyipNkaghylGxV6EIZGdO8t2Bds1XUg_Xd0eT409KHQejFn_AYMtAkKe6QstMm7g2jhOOU6CKApYX6Wy2usO4_7lmv9cb34V6Aq7jT8tcDWHP1Q7j7RxHDR_BrByfz726GIw6dxMw1PrqrRm6zNkMCxfiVAO0CM67RG9prYaiUjrukRSukG5ltrMgWLHxxRHKnTalEW1fInUfJSsAv3sOARz7-06Hv58mRTn7kYzi5kbV_Ar16XrungGlhTVwkjrBfKa0hGzKVqZrKWDsePOjDsFvcvAylz7kDxyxfFW1mguREkNwTJFd9eLt857wt_HHt6I2OZnkQAhf5imX78Gr5mLYv-2Rs7eaXPIakfCqVjPvwrqP1aor_f_HZ9V98Cbdpe-QfDyaHz-FOxJzmIxA3oNcsLt0LQlJNsRlYFuHspnfJb_hlLJA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Event+Detection+Model+for+Water+Distribution+Systems+Based+on+Data-Driven+Estimation+and+Support+Vector+Machine+Classification&rft.jtitle=Water+resources+management&rft.au=Zou%2C+Xiang-Yun&rft.au=Lin%2C+Yi-Li&rft.au=Xu%2C+Bin&rft.au=Guo%2C+Zi-Bo&rft.date=2019-10-01&rft.pub=Springer+Netherlands&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=33&rft.issue=13&rft.spage=4569&rft.epage=4581&rft_id=info:doi/10.1007%2Fs11269-019-02317-5&rft.externalDocID=10_1007_s11269_019_02317_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon