Preparation and properties of floral CaO/ZnO composite from Achatina fulica snail shell

In this study, CaO prepared by calcination treatment from abandoned Achatina fulica shell was used as a raw material, and the floral CaO/ZnO photocatalytic composite material was prepared through co-precipitation method. SEM study showed ZnO with spindle-like petals in the range of 500–1000 nm grown...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science and pollution research international Vol. 28; no. 43; pp. 61841 - 61847
Main Authors Jiang, Qiushi, Han, Zhaolian, Yuan, Yafeng, Cheng, Zhiqiang
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this study, CaO prepared by calcination treatment from abandoned Achatina fulica shell was used as a raw material, and the floral CaO/ZnO photocatalytic composite material was prepared through co-precipitation method. SEM study showed ZnO with spindle-like petals in the range of 500–1000 nm grown on the surface of CaO carrier. The mapping image shows that the base component of the floral structure is mainly CaO, which is because CaO is not only in the reaction as a carrier, but also creates an alkaline environment in the methanol system, which is advantageous for co-precipitation. UV-vis spectroscopy shows that the visible light absorption of composites has red shifts; besides, PL, EIS, and photocurrent test showed that the composites have stronger electronic hole separation capabilities. The visible light degradation test of rhodamine B showed that CaO/ZnO photocatalytic composite could degrade 90% of the pollutants in 25 min, superior to CaO and ZnO, exhibiting recyclability properties, which is a potential candidate with cost-effective and sustainable photocatalysts.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-021-16260-9