Local field effects in multicomponent media

We investigate local-field effects in nonlinear optical materials composed of two species of atoms. One species of atom is assumed to be near resonance with an applied field and is modeled as a two-level system while the other species of atom is assumed to be in the linear regime. If the near dipole...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 1; no. 6; pp. 152 - 159
Main Authors Crenshaw, M, Sullivan, K, Bowden, C
Format Journal Article
LanguageEnglish
Published United States 15.09.1997
Online AccessGet full text

Cover

Loading…
More Information
Summary:We investigate local-field effects in nonlinear optical materials composed of two species of atoms. One species of atom is assumed to be near resonance with an applied field and is modeled as a two-level system while the other species of atom is assumed to be in the linear regime. If the near dipole-dipole interaction between two-level atoms is negligible, the usual local-field enhancement of the field is obtained. For the case in which near-dipole-dipole interactions are significant due to a high density of two-level atoms, local-field effects associated with the presence of a optically linear material component lead to local-field enhancement of the near dipole-dipole interaction, intrinsic cooperative decays, and coherence exchange processes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/oe.1.000152