Triplex tetra-primer ARMS-PCR method for the simultaneous detection of MTHFR c.677C>T and c.1298A>C, and MTRR c.66A>G Polymorphisms of the folate-homocysteine metabolic pathway

The folate-homocysteine metabolic pathway was shown to play an important role in several diseases such as cancers, cardiovascular diseases, and neurodegenerative diseases. The c.677C>T and c.1298A>C polymorphisms of the Methylenetetrahydrofolate reductase (MTHFR) gene, and c.66A>G of the Me...

Full description

Saved in:
Bibliographic Details
Published inMolecular and cellular probes Vol. 26; no. 1; pp. 16 - 20
Main Authors Lajin, Bassam, Alachkar, Amal, Alhaj Sakur, Amir
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.02.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The folate-homocysteine metabolic pathway was shown to play an important role in several diseases such as cancers, cardiovascular diseases, and neurodegenerative diseases. The c.677C>T and c.1298A>C polymorphisms of the Methylenetetrahydrofolate reductase (MTHFR) gene, and c.66A>G of the Methionine synthase reductase (MTRR) gene are the most commonly investigated polymorphisms in the folate-homocysteine metabolic pathway. The currently used methods for the detection of the three polymorphisms are either slow and laborious or extremely expensive. In this paper, a new highly optimized method for the simultaneous detection of the three single nucleotide polymorphisms is described. The proposed method utilizes 12 primers in a single PCR reaction to detect the three polymorphisms simultaneously based on the principle of tetra-primer ARMS-PCR (also known as PCR-CTPP). The proposed method offers extremely fast, economical, and simple detection. Validation by PCR-RFLP showed 100% concordance in genotype assignment. The proposed method was successfully applied to a sample of the Syrian population (n=126), which was not previously genotyped for any of the three SNPs. The variant allele frequencies were found to be 31, 29, and 43% for the c.677C>T, c.1298A>C, and c.66A>G polymorphisms, respectively. The proposed method is the first to detect three SNPs in a single PCR reaction based on tetra-primer ARMS-PCR or PCR-CTPP. We suggest that the use of Betaine may play an important role in multiplex tetra-primer ARMS-PCR or PCR-CTPP based on its potential capacity to close the gap in melting temperature between different primers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0890-8508
1096-1194
DOI:10.1016/j.mcp.2011.10.005