Open-window mapping of accessory pathways utilizing high-density mapping

Purpose Accessory pathway (AP) mapping is currently based on point-by-point mapping and identifying if a local electrogram’s origin is atrial, pathway, or ventricular, which is time-consuming and prone to insufficient mapping. We sought to determine the feasibility of automated and high-density mapp...

Full description

Saved in:
Bibliographic Details
Published inJournal of interventional cardiac electrophysiology Vol. 61; no. 3; pp. 525 - 533
Main Authors Schricker, Amir A., Winkle, Roger, Moskovitz, Ryan, Suchomel, Lucas, Fowler, Steven, Engel, Greg, Cho, Shaun, Salcedo, Jonathan, Woods, Christopher E.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Purpose Accessory pathway (AP) mapping is currently based on point-by-point mapping and identifying if a local electrogram’s origin is atrial, pathway, or ventricular, which is time-consuming and prone to insufficient mapping. We sought to determine the feasibility of automated and high-density mapping to define AP location using open-window mapping (OWM), which does not rely on defining the electrogram’s origin but simply detects the sharpest local signal at each point. Methods We enrolled 23 consecutive patients undergoing catheter ablation for atrioventricular reentrant tachycardia. High-density mapping was performed using OWM and ablation was performed. The successful site of ablation was determined by the loss of pathway function. Results OWM was 100% effective at identifying the successful site of ablation (average mapping time 7.3 ± 4.3 min.) Permanent AP elimination was achieved using a mean radiofrequency energy time of 18.5 ± 24.5 s/patient. Transiently successful ablations were 4.0 ± 1.8 mm from permanently successful sites and had lower contact force (5.1 ± 2.5 g vs. 11.7 ± 9.0 g; P  = 0.041). Unsuccessful sites had similar contact force to permanently successful sites (12.2 ± 9.2 g vs. 11.7 ± 9.0 g; P  = 0.856) but were 6.4 ± 2.0 mm away from successful sites. Conclusion A novel technique of high-density, automated, and open-window mapping (OWM) effectively localizes APs without the need to differentiate the signal’s site of origin. These findings suggest that OWM can be used to rapidly and successfully map and ablate APs. Both distances from the pathway and contact force were shown to be important for pathway ablation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1383-875X
1572-8595
DOI:10.1007/s10840-020-00850-7