Nuclear Norm Based Matrix Regression with Applications to Face Recognition with Occlusion and Illumination Changes
Recently, regression analysis has become a popular tool for face recognition. Most existing regression methods use the one-dimensional, pixel-based error model, which characterizes the representation error individually, pixel by pixel, and thus neglects the two-dimensional structure of the error ima...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 39; no. 1; pp. 156 - 171 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Recently, regression analysis has become a popular tool for face recognition. Most existing regression methods use the one-dimensional, pixel-based error model, which characterizes the representation error individually, pixel by pixel, and thus neglects the two-dimensional structure of the error image. We observe that occlusion and illumination changes generally lead, approximately, to a low-rank error image. In order to make use of this low-rank structural information, this paper presents a two-dimensional image-matrix-based error model, namely, nuclear norm based matrix regression (NMR), for face representation and classification. NMR uses the minimal nuclear norm of representation error image as a criterion, and the alternating direction method of multipliers (ADMM) to calculate the regression coefficients. We further develop a fast ADMM algorithm to solve the approximate NMR model and show it has a quadratic rate of convergence. We experiment using five popular face image databases: the Extended Yale B, AR, EURECOM, Multi-PIE and FRGC. Experimental results demonstrate the performance advantage of NMR over the state-of-the-art regression-based methods for face recognition in the presence of occlusion and illumination variations. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0162-8828 1939-3539 2160-9292 |
DOI: | 10.1109/TPAMI.2016.2535218 |