Nuclear Norm Based Matrix Regression with Applications to Face Recognition with Occlusion and Illumination Changes

Recently, regression analysis has become a popular tool for face recognition. Most existing regression methods use the one-dimensional, pixel-based error model, which characterizes the representation error individually, pixel by pixel, and thus neglects the two-dimensional structure of the error ima...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 39; no. 1; pp. 156 - 171
Main Authors Yang, Jian, Luo, Lei, Qian, Jianjun, Tai, Ying, Zhang, Fanlong, Xu, Yong
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recently, regression analysis has become a popular tool for face recognition. Most existing regression methods use the one-dimensional, pixel-based error model, which characterizes the representation error individually, pixel by pixel, and thus neglects the two-dimensional structure of the error image. We observe that occlusion and illumination changes generally lead, approximately, to a low-rank error image. In order to make use of this low-rank structural information, this paper presents a two-dimensional image-matrix-based error model, namely, nuclear norm based matrix regression (NMR), for face representation and classification. NMR uses the minimal nuclear norm of representation error image as a criterion, and the alternating direction method of multipliers (ADMM) to calculate the regression coefficients. We further develop a fast ADMM algorithm to solve the approximate NMR model and show it has a quadratic rate of convergence. We experiment using five popular face image databases: the Extended Yale B, AR, EURECOM, Multi-PIE and FRGC. Experimental results demonstrate the performance advantage of NMR over the state-of-the-art regression-based methods for face recognition in the presence of occlusion and illumination variations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2016.2535218