Adaptive Neural Network Tracking Control for Robotic Manipulators With Dead Zone

In this paper, the adaptive neural network (NN) tracking control problem is addressed for robot manipulators subject to dead-zone input. The control objective is to design an adaptive NN controller to guarantee the stability of the systems and obtain good performance. Different from the existing res...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 30; no. 12; pp. 3611 - 3620
Main Authors Zhou, Qi, Zhao, Shiyi, Li, Hongyi, Lu, Renquan, Wu, Chengwei
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, the adaptive neural network (NN) tracking control problem is addressed for robot manipulators subject to dead-zone input. The control objective is to design an adaptive NN controller to guarantee the stability of the systems and obtain good performance. Different from the existing results, which used NN to approximate the nonlinearities directly, NNs are employed to identify the originally designed virtual control signals with unknown nonlinear items in this paper. Moreover, a sequence of virtual control signals and real controller are designed. The adaptive backstepping control method and Lyapunov stability theory are used to prove the proposed controller can ensure all the signals in the systems are semiglobally uniformly ultimately bounded, and the output of the systems can track the reference signal closely. Finally, the proposed adaptive control strategy is applied to the Puma 560 robot manipulator to demonstrate its effectiveness.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2018.2869375