Pull-out testing of multiscale structured metallic z-reinforcements for CFRP laminates
A testing method is presented to determine the pull-out behavior of interleaving metallic z-reinforcements for carbon fiber reinforced polymer (CFRP) laminates and joints. Energy absorbing mechanisms are described with respect to the metallic materials and means of surface pretreatment applied. Mech...
Saved in:
Published in | Composite structures Vol. 161; pp. 384 - 392 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A testing method is presented to determine the pull-out behavior of interleaving metallic z-reinforcements for carbon fiber reinforced polymer (CFRP) laminates and joints. Energy absorbing mechanisms are described with respect to the metallic materials and means of surface pretreatment applied. Mechanical, wet-chemical and physical pretreatments result in milli-, micro- and nanoscaled oxide morphologies of titanium and stainless steel surfaces. Both, a high macro roughness of the reinforcement surface and a low difference in thermal expansion with regard to the surrounding CFRP is clearly proven to feature the highest level of energy absorption during pull-out tests. Surface analyses through scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) indicate laser-induced nanostructure’s scale and morphology to provide good adhesion properties but not to allow macroscopic friction between metal surface and epoxy resin. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0263-8223 1879-1085 |
DOI: | 10.1016/j.compstruct.2016.11.060 |