Event-Triggered Output Feedback Synchronization of Master-Slave Neural Networks Under Deception Attacks
The problem of event-triggered synchronization of master-slave neural networks is investigated in this article. It is assumed that both communication channels from the sensor to controller and from controller to actuator are subject to stochastic deception attacks modeled by two independent Markov p...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 33; no. 3; pp. 952 - 961 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The problem of event-triggered synchronization of master-slave neural networks is investigated in this article. It is assumed that both communication channels from the sensor to controller and from controller to actuator are subject to stochastic deception attacks modeled by two independent Markov processes. Two discrete event-triggered mechanisms are introduced for both channels to reduce the number of data transmission through the communication channels. To comply with practical point of view, static output feedback is utilized. By employing the Lyapunov-Krasovskii functional method, some sufficient conditions on the synchronization of master-slave neural networks are derived in terms of linear matrix inequalities, which make it easy to design suitable output feedback controllers. Finally, a numerical example is presented to show the effectiveness of the proposed method. |
---|---|
AbstractList | The problem of event-triggered synchronization of master–slave neural networks is investigated in this article. It is assumed that both communication channels from the sensor to controller and from controller to actuator are subject to stochastic deception attacks modeled by two independent Markov processes. Two discrete event-triggered mechanisms are introduced for both channels to reduce the number of data transmission through the communication channels. To comply with practical point of view, static output feedback is utilized. By employing the Lyapunov–Krasovskii functional method, some sufficient conditions on the synchronization of master–slave neural networks are derived in terms of linear matrix inequalities, which make it easy to design suitable output feedback controllers. Finally, a numerical example is presented to show the effectiveness of the proposed method. The problem of event-triggered synchronization of master-slave neural networks is investigated in this article. It is assumed that both communication channels from the sensor to controller and from controller to actuator are subject to stochastic deception attacks modeled by two independent Markov processes. Two discrete event-triggered mechanisms are introduced for both channels to reduce the number of data transmission through the communication channels. To comply with practical point of view, static output feedback is utilized. By employing the Lyapunov-Krasovskii functional method, some sufficient conditions on the synchronization of master-slave neural networks are derived in terms of linear matrix inequalities, which make it easy to design suitable output feedback controllers. Finally, a numerical example is presented to show the effectiveness of the proposed method.The problem of event-triggered synchronization of master-slave neural networks is investigated in this article. It is assumed that both communication channels from the sensor to controller and from controller to actuator are subject to stochastic deception attacks modeled by two independent Markov processes. Two discrete event-triggered mechanisms are introduced for both channels to reduce the number of data transmission through the communication channels. To comply with practical point of view, static output feedback is utilized. By employing the Lyapunov-Krasovskii functional method, some sufficient conditions on the synchronization of master-slave neural networks are derived in terms of linear matrix inequalities, which make it easy to design suitable output feedback controllers. Finally, a numerical example is presented to show the effectiveness of the proposed method. |
Author | Kazemy, Ali Lam, James Zhang, Xian-Ming |
Author_xml | – sequence: 1 givenname: Ali orcidid: 0000-0001-7472-224X surname: Kazemy fullname: Kazemy, Ali email: kazemy@tafreshu.ac.ir organization: Department of Electrical Engineering, Tafresh University, Tafresh, Iran – sequence: 2 givenname: James orcidid: 0000-0002-0294-0640 surname: Lam fullname: Lam, James organization: Department of Mechanical Engineering, The University of Hong Kong, Hong Kong – sequence: 3 givenname: Xian-Ming orcidid: 0000-0003-0691-5386 surname: Zhang fullname: Zhang, Xian-Ming organization: School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, VIC, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33108299$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1OGzEURq2KqlDKC4CERmLTzQT72p54loi_VkrDIkHqznI8N2FgYgfbQ0WfHpMEFizw5npxzif7ft_JjvMOCTlkdMAYrU-n4_FoMgAKdMAppxVXX8gesApK4ErtvN-Hf3fJQYz3NJ-KykrU38gu54wqqOs9srh8QpfKaWgXCwzYFDd9WvWpuEJsZsY-FJNnZ--Cd-1_k1rvCj8v_piYMJSTzjxhMcY-mC6P9M-Hh1jcugZDcYEWV2v-LKUcE3-Qr3PTRTzYzn1ye3U5Pf9Vjm6uf5-fjUrLJUslKqzEXMwqoI1kRhhsODWgmDUIQ6uspbKWkL8ljKAMLIChzXAGtambSgq-T35uclfBP_YYk1620WLXGYe-jxqElGyYfcjoyQf03vfB5ddpqLikUkhQmTreUv1siY1ehXZpwrN-W2EG1AawwccYcK5tm9a7SsG0nWZUvxam14Xp18L0trCswgf1Lf1T6WgjtYj4LtQgGOWMvwAqL6A3 |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1016_j_neunet_2024_106808 crossref_primary_10_1080_00207721_2023_2212675 crossref_primary_10_1109_TNNLS_2021_3123235 crossref_primary_10_1080_00207721_2020_1858205 crossref_primary_10_1016_j_cnsns_2023_107279 crossref_primary_10_1109_TCYB_2024_3518578 crossref_primary_10_1080_00207721_2025_2477203 crossref_primary_10_1109_TCYB_2022_3208156 crossref_primary_10_1080_23307706_2023_2240338 crossref_primary_10_1007_s11432_023_4053_9 crossref_primary_10_3390_act12110427 crossref_primary_10_1016_j_neucom_2024_128660 crossref_primary_10_1109_ACCESS_2021_3092402 crossref_primary_10_1109_ACCESS_2024_3379420 crossref_primary_10_1002_rnc_7168 crossref_primary_10_1016_j_jfranklin_2025_107640 crossref_primary_10_1109_TCYB_2024_3376695 crossref_primary_10_1109_TSMC_2021_3100481 crossref_primary_10_1016_j_jfranklin_2024_107119 crossref_primary_10_1177_10775463241257977 crossref_primary_10_1016_j_chaos_2023_113982 crossref_primary_10_1016_j_fss_2024_109065 crossref_primary_10_1109_JAS_2023_124161 crossref_primary_10_1109_TCNS_2023_3280457 crossref_primary_10_1007_s00521_024_09778_9 crossref_primary_10_1016_j_jfranklin_2023_04_028 crossref_primary_10_1016_j_jfranklin_2023_10_019 crossref_primary_10_1016_j_neunet_2024_106942 crossref_primary_10_3934_era_2023132 crossref_primary_10_1109_TITS_2024_3390701 crossref_primary_10_1049_cth2_12721 crossref_primary_10_1007_s12555_021_0506_1 crossref_primary_10_1109_TCSI_2023_3287180 crossref_primary_10_1002_oca_3078 crossref_primary_10_1080_00207721_2024_2316249 crossref_primary_10_1016_j_amc_2024_128723 crossref_primary_10_1007_s12555_024_0441_z crossref_primary_10_1109_TNSE_2024_3436085 crossref_primary_10_1109_TNNLS_2021_3105591 crossref_primary_10_3934_mbe_2024021 crossref_primary_10_1109_TNSE_2023_3267072 crossref_primary_10_1016_j_ijepes_2024_109902 crossref_primary_10_3390_electronics13091737 crossref_primary_10_1016_j_cnsns_2023_107655 crossref_primary_10_1016_j_jfranklin_2025_107580 crossref_primary_10_1016_j_knosys_2024_112304 crossref_primary_10_1016_j_neucom_2025_129730 crossref_primary_10_1002_rnc_7501 crossref_primary_10_1002_rnc_7225 crossref_primary_10_1002_rnc_7103 crossref_primary_10_1016_j_chaos_2024_114526 crossref_primary_10_1016_j_knosys_2021_107939 crossref_primary_10_1109_TNNLS_2023_3300270 crossref_primary_10_1002_rnc_7847 crossref_primary_10_1007_s12555_022_0261_y crossref_primary_10_1016_j_ins_2023_119599 crossref_primary_10_1016_j_physa_2024_129726 crossref_primary_10_1007_s00034_023_02584_z crossref_primary_10_3390_math11173697 crossref_primary_10_1016_j_ins_2022_10_088 crossref_primary_10_1016_j_neucom_2023_126256 crossref_primary_10_1002_rnc_7173 crossref_primary_10_1109_TFUZZ_2022_3199822 crossref_primary_10_1002_rnc_7172 crossref_primary_10_3934_era_2025056 crossref_primary_10_1016_j_ins_2024_120113 crossref_primary_10_1109_TTE_2023_3328305 crossref_primary_10_3390_math11102363 crossref_primary_10_1002_rnc_7576 crossref_primary_10_1002_rnc_7179 crossref_primary_10_1002_rnc_7178 crossref_primary_10_1109_TSMC_2023_3330946 crossref_primary_10_1016_j_chaos_2023_113535 crossref_primary_10_1002_rnc_7759 crossref_primary_10_1002_rnc_7913 crossref_primary_10_1007_s00371_024_03379_2 crossref_primary_10_3390_act13110442 crossref_primary_10_1109_TNNLS_2022_3144032 crossref_primary_10_1109_TCYB_2022_3227021 crossref_primary_10_1080_00207721_2025_2474133 crossref_primary_10_1016_j_jfranklin_2023_11_021 crossref_primary_10_1109_TSG_2024_3379411 crossref_primary_10_3390_math11204245 crossref_primary_10_1109_TCYB_2024_3422232 crossref_primary_10_1002_asjc_2962 crossref_primary_10_3390_act13120522 crossref_primary_10_1007_s12555_021_0359_7 crossref_primary_10_1049_cth2_12531 crossref_primary_10_1016_j_jfranklin_2024_106996 crossref_primary_10_1016_j_matcom_2024_03_005 crossref_primary_10_1002_rnc_7000 crossref_primary_10_1016_j_neunet_2023_03_002 crossref_primary_10_1002_rnc_7508 crossref_primary_10_1109_TCSI_2024_3381334 crossref_primary_10_1109_TCYB_2024_3454053 crossref_primary_10_1109_TSMC_2022_3227607 crossref_primary_10_1002_rnc_7590 crossref_primary_10_1016_j_jfranklin_2023_11_016 crossref_primary_10_1016_j_jfranklin_2024_107152 crossref_primary_10_1007_s40815_022_01429_2 crossref_primary_10_1002_rnc_7479 crossref_primary_10_1002_rnc_7632 crossref_primary_10_1016_j_ijepes_2023_109278 crossref_primary_10_1109_TIV_2023_3317238 crossref_primary_10_1109_TSMC_2023_3344869 crossref_primary_10_1016_j_jfranklin_2024_107427 crossref_primary_10_1002_asjc_3351 crossref_primary_10_1016_j_isatra_2025_01_031 crossref_primary_10_1016_j_neucom_2021_12_087 crossref_primary_10_1016_j_amc_2023_128085 crossref_primary_10_1177_01423312211043666 crossref_primary_10_1002_mma_9767 crossref_primary_10_1007_s13042_024_02195_3 crossref_primary_10_1109_TFUZZ_2023_3308933 crossref_primary_10_1002_rnc_7148 crossref_primary_10_1002_rnc_7147 crossref_primary_10_1002_rnc_7781 crossref_primary_10_1016_j_jfranklin_2022_07_017 crossref_primary_10_1016_j_amc_2024_128653 crossref_primary_10_1016_j_jfranklin_2024_107415 crossref_primary_10_1002_rnc_7802 crossref_primary_10_1109_TIFS_2023_3347889 crossref_primary_10_1002_rnc_7647 crossref_primary_10_3934_era_2024291 crossref_primary_10_3934_mbe_2024196 crossref_primary_10_1016_j_jfranklin_2023_07_031 crossref_primary_10_1016_j_jfranklin_2024_106684 crossref_primary_10_1109_TNSE_2022_3177718 crossref_primary_10_3934_era_2024208 crossref_primary_10_3390_machines13030192 crossref_primary_10_1016_j_neunet_2024_107018 crossref_primary_10_1016_j_automatica_2023_111370 |
Cites_doi | 10.1080/00207170110067116 10.1109/TNNLS.2016.2619345 10.1109/TCYB.2019.2921633 10.1007/s40815-018-0590-4 10.1109/TII.2018.2884494 10.1109/TNNLS.2017.2700321 10.1016/j.neucom.2017.10.009 10.1016/j.neucom.2019.01.099 10.1109/TCYB.2017.2729581 10.1016/j.jfranklin.2020.01.013 10.1109/TNNLS.2017.2728639 10.1109/TFUZZ.2018.2849702 10.1002/rnc.3120 10.1016/j.jfranklin.2019.01.045 10.1109/CDC.2000.914233 10.1109/TNNLS.2019.2896162 10.1109/TCYB.2019.2956137 10.1109/TCYB.2015.2487420 10.1002/oca.761 10.1016/j.neucom.2018.06.015 10.1016/j.nahs.2017.12.006 10.1109/TCST.2012.2196573 10.1016/j.ins.2018.04.055 10.1016/j.neucom.2019.03.058 10.1109/TNNLS.2019.2943548 10.1109/ACCESS.2018.2850156 10.1109/9.618250 10.1109/TAC.2003.811277 10.1109/TCYB.2019.2908187 10.1016/j.neucom.2015.09.058 10.1016/j.ins.2018.04.018 10.1109/TNNLS.2015.2425881 10.1109/TNNLS.2016.2636163 10.1109/TII.2018.2861904 10.1016/j.neucom.2019.04.063 10.1016/j.jfranklin.2015.01.026 10.1109/JAS.2019.1911651 10.1016/j.ins.2018.05.019 10.1109/TNNLS.2016.2580609 10.1109/TNNLS.2019.2963146 10.1109/TNNLS.2018.2873163 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2020.3030638 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 961 |
ExternalDocumentID | 33108299 10_1109_TNNLS_2020_3030638 9241031 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: General Research Fund grantid: 17201219 funderid: 10.13039/501100002920 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c351t-e8e64f4b620d51a4aed30a281cae27c8cc059522374a4012c22a0d7b29a9d6543 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 16:21:17 EDT 2025 Sun Jun 29 16:02:41 EDT 2025 Wed Apr 16 06:19:26 EDT 2025 Thu Apr 24 23:09:35 EDT 2025 Tue Jul 01 00:27:36 EDT 2025 Wed Aug 27 02:49:29 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-e8e64f4b620d51a4aed30a281cae27c8cc059522374a4012c22a0d7b29a9d6543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7472-224X 0000-0002-0294-0640 0000-0003-0691-5386 |
PMID | 33108299 |
PQID | 2635054528 |
PQPubID | 85436 |
PageCount | 10 |
ParticipantIDs | pubmed_primary_33108299 crossref_primary_10_1109_TNNLS_2020_3030638 proquest_miscellaneous_2455172372 ieee_primary_9241031 proquest_journals_2635054528 crossref_citationtrail_10_1109_TNNLS_2020_3030638 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref30 ref11 ref33 ref10 ref32 ref2 ref17 ref39 ref16 ref38 ref19 ref18 Zha (ref31) 2018; 457 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref21 ref43 ref28 ref27 ref29 ref8 ref7 Cochocki (ref1) 1993 ref9 ref4 ref3 ref6 Boukas (ref36) 2006 ref5 ref40 |
References_xml | – ident: ref43 doi: 10.1080/00207170110067116 – ident: ref4 doi: 10.1109/TNNLS.2016.2619345 – ident: ref9 doi: 10.1109/TCYB.2019.2921633 – ident: ref32 doi: 10.1007/s40815-018-0590-4 – ident: ref20 doi: 10.1109/TII.2018.2884494 – ident: ref21 doi: 10.1109/TNNLS.2017.2700321 – volume-title: Neural Networks for Optimization and Signal Processing year: 1993 ident: ref1 – ident: ref23 doi: 10.1016/j.neucom.2017.10.009 – ident: ref24 doi: 10.1016/j.neucom.2019.01.099 – ident: ref15 doi: 10.1109/TCYB.2017.2729581 – ident: ref35 doi: 10.1016/j.jfranklin.2020.01.013 – ident: ref12 doi: 10.1109/TNNLS.2017.2728639 – ident: ref26 doi: 10.1109/TFUZZ.2018.2849702 – ident: ref40 doi: 10.1002/rnc.3120 – ident: ref29 doi: 10.1016/j.jfranklin.2019.01.045 – ident: ref39 doi: 10.1109/CDC.2000.914233 – ident: ref5 doi: 10.1109/TNNLS.2019.2896162 – ident: ref25 doi: 10.1109/TCYB.2019.2956137 – ident: ref8 doi: 10.1109/TCYB.2015.2487420 – ident: ref41 doi: 10.1002/oca.761 – ident: ref22 doi: 10.1016/j.neucom.2018.06.015 – ident: ref14 doi: 10.1016/j.nahs.2017.12.006 – ident: ref38 doi: 10.1109/TCST.2012.2196573 – ident: ref17 doi: 10.1016/j.ins.2018.04.055 – ident: ref28 doi: 10.1016/j.neucom.2019.03.058 – ident: ref33 doi: 10.1109/TNNLS.2019.2943548 – ident: ref3 doi: 10.1109/ACCESS.2018.2850156 – ident: ref42 doi: 10.1109/9.618250 – ident: ref37 doi: 10.1109/TAC.2003.811277 – ident: ref7 doi: 10.1109/TCYB.2019.2908187 – ident: ref19 doi: 10.1016/j.neucom.2015.09.058 – volume: 457 start-page: 141 year: 2018 ident: ref31 article-title: Decentralized event-triggered $\mathcal{H}_\infty$ control for neural networks subject to cyber-attacks publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.04.018 – ident: ref10 doi: 10.1109/TNNLS.2015.2425881 – ident: ref11 doi: 10.1109/TNNLS.2016.2636163 – volume-title: Stochastic Switching Systems: Analysis and Design year: 2006 ident: ref36 – ident: ref2 doi: 10.1109/TII.2018.2861904 – ident: ref6 doi: 10.1016/j.neucom.2019.04.063 – ident: ref13 doi: 10.1016/j.jfranklin.2015.01.026 – ident: ref16 doi: 10.1109/JAS.2019.1911651 – ident: ref27 doi: 10.1016/j.ins.2018.05.019 – ident: ref18 doi: 10.1109/TNNLS.2016.2580609 – ident: ref34 doi: 10.1109/TNNLS.2019.2963146 – ident: ref30 doi: 10.1109/TNNLS.2018.2873163 |
SSID | ssj0000605649 |
Score | 2.665999 |
Snippet | The problem of event-triggered synchronization of master-slave neural networks is investigated in this article. It is assumed that both communication channels... The problem of event-triggered synchronization of master–slave neural networks is investigated in this article. It is assumed that both communication channels... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 952 |
SubjectTerms | Actuators Channels Communication Communication channels Computer crime Data communication Data transmission Deception Deception-attacks event-triggered mechanisms Feedback Feedback control Linear matrix inequalities Manganese Markov Chains Markov processes Mathematical analysis Neural networks Neural Networks, Computer Output feedback Stochasticity Synchronism Synchronization |
Title | Event-Triggered Output Feedback Synchronization of Master-Slave Neural Networks Under Deception Attacks |
URI | https://ieeexplore.ieee.org/document/9241031 https://www.ncbi.nlm.nih.gov/pubmed/33108299 https://www.proquest.com/docview/2635054528 https://www.proquest.com/docview/2455172372 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanrjQ0vLYUiojcQNvE9txkmMFXVWIXQ67lfYW-THpoVUW0QQJfj0zzgMJAeIWJWM71ozlb-yZ-Rh7Y1OAMqRaGK-sQP9LiwKBhXAIDZw1TrtAucPLlbm-0R-32XaPvZtyYQAgBp_BnB7jXX7Y-Y6Oyi7QVyBWgn22j45bn6s1nackiMtNRLsyNVJIlW_HHJmkvNisVp_W6A1KdFIJJSvi6VMIbQoZq77-2pIix8rf4WbcdhaHbDn-cB9tcjfvWjf3P36r5fi_Mzpijwf8yS97g3nC9qA5ZocjtwMflvoJu72iQEixQef9lug8-eeuRRG-wN3OWX_H198bHwvr9nmcfFfzpaWqC2J9b78Bp6ofONCqDzN_4JFgiX-AIYyGX7Ytpfc_ZTeLq837azGQMgivsrQVUIDRtXZGJiFLrbYQVGJlkXoLMveF9wjYENSpXFv03aSX0iYhd7K0ZaBE1mfsoNk18ILxXAXIQl17cNihzNAwEgs1vjCFUqaesXTUS-WHiuVEnHFfRc8lKauo1orUWg1qnbG3U5svfb2Of0qfkE4myUEdM3Y2qr8alvRDRVV7EmJkx1avp8-4GOmGxTaw61BGIwDNce5yxp73ZjP1PVrb6Z_HfMkeScqsiOFtZ-yg_drBK8Q7rTuPhv4ThLP6LQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALBQploYCRuIG3iZ3nsYKuFthdDruV9hbZzqSHVllEk0rl1zPjPJAQIG5RMnYSzVjzjT0zH8BbEyLmZRjJxGkjKf6KZEbAQlqCBtYkNrIl1w4vV8n8PPq8jbd78H6shUFEn3yGU770Z_nlzrW8VXZCsQKzEtyBu-T3Y9VVa407KgEh88TjXRUmSiqdbocqmSA_2axWizXFg4rCVMbJmpn6NIGbTPm-r7-ckmdZ-Tvg9I5ndgDL4ZO7fJPLadvYqfvxWzfH__2nh_CgR6DitDOZR7CH9WM4GNgdRL_YD-HijFMh5YbC9wsm9BRf24ZExIz8nTXuUqxva-db63aVnGJXiaXhvgtyfWVuUHDfD3rRqks0vxaeYkl8xD6RRpw2DRf4P4Hz2dnmw1z2tAzS6ThsJGaYRFVkExWUcWgig6UOjMpCZ1ClLnOOIBvBOp1GhqI35ZQyQZlalZu85FLWp7Bf72p8BiLVJcZlVTm0NKGKyTQCgxXdSDKtk2oC4aCXwvU9y5k646rwsUuQF16tBau16NU6gXfjmG9dx45_Sh-yTkbJXh0TOB7UX_SL-rrgvj0Bc7LTqDfjY1qOfMZiaty1JEOGSZhQp2oCR53ZjHMP1vb8z-98Dffmm-WiWHxafXkB9xXXWfhkt2PYb763-JLQT2NfeaP_CbjL_Xc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Event-Triggered+Output+Feedback+Synchronization+of+Master%E2%80%93Slave+Neural+Networks+Under+Deception+Attacks&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Kazemy%2C+Ali&rft.au=Lam%2C+James&rft.au=Zhang%2C+Xian-Ming&rft.date=2022-03-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=33&rft.issue=3&rft.spage=952&rft.epage=961&rft_id=info:doi/10.1109%2FTNNLS.2020.3030638&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2020_3030638 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |