Event-Triggered Output Feedback Synchronization of Master-Slave Neural Networks Under Deception Attacks

The problem of event-triggered synchronization of master-slave neural networks is investigated in this article. It is assumed that both communication channels from the sensor to controller and from controller to actuator are subject to stochastic deception attacks modeled by two independent Markov p...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 33; no. 3; pp. 952 - 961
Main Authors Kazemy, Ali, Lam, James, Zhang, Xian-Ming
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The problem of event-triggered synchronization of master-slave neural networks is investigated in this article. It is assumed that both communication channels from the sensor to controller and from controller to actuator are subject to stochastic deception attacks modeled by two independent Markov processes. Two discrete event-triggered mechanisms are introduced for both channels to reduce the number of data transmission through the communication channels. To comply with practical point of view, static output feedback is utilized. By employing the Lyapunov-Krasovskii functional method, some sufficient conditions on the synchronization of master-slave neural networks are derived in terms of linear matrix inequalities, which make it easy to design suitable output feedback controllers. Finally, a numerical example is presented to show the effectiveness of the proposed method.
AbstractList The problem of event-triggered synchronization of master–slave neural networks is investigated in this article. It is assumed that both communication channels from the sensor to controller and from controller to actuator are subject to stochastic deception attacks modeled by two independent Markov processes. Two discrete event-triggered mechanisms are introduced for both channels to reduce the number of data transmission through the communication channels. To comply with practical point of view, static output feedback is utilized. By employing the Lyapunov–Krasovskii functional method, some sufficient conditions on the synchronization of master–slave neural networks are derived in terms of linear matrix inequalities, which make it easy to design suitable output feedback controllers. Finally, a numerical example is presented to show the effectiveness of the proposed method.
The problem of event-triggered synchronization of master-slave neural networks is investigated in this article. It is assumed that both communication channels from the sensor to controller and from controller to actuator are subject to stochastic deception attacks modeled by two independent Markov processes. Two discrete event-triggered mechanisms are introduced for both channels to reduce the number of data transmission through the communication channels. To comply with practical point of view, static output feedback is utilized. By employing the Lyapunov-Krasovskii functional method, some sufficient conditions on the synchronization of master-slave neural networks are derived in terms of linear matrix inequalities, which make it easy to design suitable output feedback controllers. Finally, a numerical example is presented to show the effectiveness of the proposed method.The problem of event-triggered synchronization of master-slave neural networks is investigated in this article. It is assumed that both communication channels from the sensor to controller and from controller to actuator are subject to stochastic deception attacks modeled by two independent Markov processes. Two discrete event-triggered mechanisms are introduced for both channels to reduce the number of data transmission through the communication channels. To comply with practical point of view, static output feedback is utilized. By employing the Lyapunov-Krasovskii functional method, some sufficient conditions on the synchronization of master-slave neural networks are derived in terms of linear matrix inequalities, which make it easy to design suitable output feedback controllers. Finally, a numerical example is presented to show the effectiveness of the proposed method.
Author Kazemy, Ali
Lam, James
Zhang, Xian-Ming
Author_xml – sequence: 1
  givenname: Ali
  orcidid: 0000-0001-7472-224X
  surname: Kazemy
  fullname: Kazemy, Ali
  email: kazemy@tafreshu.ac.ir
  organization: Department of Electrical Engineering, Tafresh University, Tafresh, Iran
– sequence: 2
  givenname: James
  orcidid: 0000-0002-0294-0640
  surname: Lam
  fullname: Lam, James
  organization: Department of Mechanical Engineering, The University of Hong Kong, Hong Kong
– sequence: 3
  givenname: Xian-Ming
  orcidid: 0000-0003-0691-5386
  surname: Zhang
  fullname: Zhang, Xian-Ming
  organization: School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, VIC, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33108299$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1OGzEURq2KqlDKC4CERmLTzQT72p54loi_VkrDIkHqznI8N2FgYgfbQ0WfHpMEFizw5npxzif7ft_JjvMOCTlkdMAYrU-n4_FoMgAKdMAppxVXX8gesApK4ErtvN-Hf3fJQYz3NJ-KykrU38gu54wqqOs9srh8QpfKaWgXCwzYFDd9WvWpuEJsZsY-FJNnZ--Cd-1_k1rvCj8v_piYMJSTzjxhMcY-mC6P9M-Hh1jcugZDcYEWV2v-LKUcE3-Qr3PTRTzYzn1ye3U5Pf9Vjm6uf5-fjUrLJUslKqzEXMwqoI1kRhhsODWgmDUIQ6uspbKWkL8ljKAMLIChzXAGtambSgq-T35uclfBP_YYk1620WLXGYe-jxqElGyYfcjoyQf03vfB5ddpqLikUkhQmTreUv1siY1ehXZpwrN-W2EG1AawwccYcK5tm9a7SsG0nWZUvxam14Xp18L0trCswgf1Lf1T6WgjtYj4LtQgGOWMvwAqL6A3
CODEN ITNNAL
CitedBy_id crossref_primary_10_1016_j_neunet_2024_106808
crossref_primary_10_1080_00207721_2023_2212675
crossref_primary_10_1109_TNNLS_2021_3123235
crossref_primary_10_1080_00207721_2020_1858205
crossref_primary_10_1016_j_cnsns_2023_107279
crossref_primary_10_1109_TCYB_2024_3518578
crossref_primary_10_1080_00207721_2025_2477203
crossref_primary_10_1109_TCYB_2022_3208156
crossref_primary_10_1080_23307706_2023_2240338
crossref_primary_10_1007_s11432_023_4053_9
crossref_primary_10_3390_act12110427
crossref_primary_10_1016_j_neucom_2024_128660
crossref_primary_10_1109_ACCESS_2021_3092402
crossref_primary_10_1109_ACCESS_2024_3379420
crossref_primary_10_1002_rnc_7168
crossref_primary_10_1016_j_jfranklin_2025_107640
crossref_primary_10_1109_TCYB_2024_3376695
crossref_primary_10_1109_TSMC_2021_3100481
crossref_primary_10_1016_j_jfranklin_2024_107119
crossref_primary_10_1177_10775463241257977
crossref_primary_10_1016_j_chaos_2023_113982
crossref_primary_10_1016_j_fss_2024_109065
crossref_primary_10_1109_JAS_2023_124161
crossref_primary_10_1109_TCNS_2023_3280457
crossref_primary_10_1007_s00521_024_09778_9
crossref_primary_10_1016_j_jfranklin_2023_04_028
crossref_primary_10_1016_j_jfranklin_2023_10_019
crossref_primary_10_1016_j_neunet_2024_106942
crossref_primary_10_3934_era_2023132
crossref_primary_10_1109_TITS_2024_3390701
crossref_primary_10_1049_cth2_12721
crossref_primary_10_1007_s12555_021_0506_1
crossref_primary_10_1109_TCSI_2023_3287180
crossref_primary_10_1002_oca_3078
crossref_primary_10_1080_00207721_2024_2316249
crossref_primary_10_1016_j_amc_2024_128723
crossref_primary_10_1007_s12555_024_0441_z
crossref_primary_10_1109_TNSE_2024_3436085
crossref_primary_10_1109_TNNLS_2021_3105591
crossref_primary_10_3934_mbe_2024021
crossref_primary_10_1109_TNSE_2023_3267072
crossref_primary_10_1016_j_ijepes_2024_109902
crossref_primary_10_3390_electronics13091737
crossref_primary_10_1016_j_cnsns_2023_107655
crossref_primary_10_1016_j_jfranklin_2025_107580
crossref_primary_10_1016_j_knosys_2024_112304
crossref_primary_10_1016_j_neucom_2025_129730
crossref_primary_10_1002_rnc_7501
crossref_primary_10_1002_rnc_7225
crossref_primary_10_1002_rnc_7103
crossref_primary_10_1016_j_chaos_2024_114526
crossref_primary_10_1016_j_knosys_2021_107939
crossref_primary_10_1109_TNNLS_2023_3300270
crossref_primary_10_1002_rnc_7847
crossref_primary_10_1007_s12555_022_0261_y
crossref_primary_10_1016_j_ins_2023_119599
crossref_primary_10_1016_j_physa_2024_129726
crossref_primary_10_1007_s00034_023_02584_z
crossref_primary_10_3390_math11173697
crossref_primary_10_1016_j_ins_2022_10_088
crossref_primary_10_1016_j_neucom_2023_126256
crossref_primary_10_1002_rnc_7173
crossref_primary_10_1109_TFUZZ_2022_3199822
crossref_primary_10_1002_rnc_7172
crossref_primary_10_3934_era_2025056
crossref_primary_10_1016_j_ins_2024_120113
crossref_primary_10_1109_TTE_2023_3328305
crossref_primary_10_3390_math11102363
crossref_primary_10_1002_rnc_7576
crossref_primary_10_1002_rnc_7179
crossref_primary_10_1002_rnc_7178
crossref_primary_10_1109_TSMC_2023_3330946
crossref_primary_10_1016_j_chaos_2023_113535
crossref_primary_10_1002_rnc_7759
crossref_primary_10_1002_rnc_7913
crossref_primary_10_1007_s00371_024_03379_2
crossref_primary_10_3390_act13110442
crossref_primary_10_1109_TNNLS_2022_3144032
crossref_primary_10_1109_TCYB_2022_3227021
crossref_primary_10_1080_00207721_2025_2474133
crossref_primary_10_1016_j_jfranklin_2023_11_021
crossref_primary_10_1109_TSG_2024_3379411
crossref_primary_10_3390_math11204245
crossref_primary_10_1109_TCYB_2024_3422232
crossref_primary_10_1002_asjc_2962
crossref_primary_10_3390_act13120522
crossref_primary_10_1007_s12555_021_0359_7
crossref_primary_10_1049_cth2_12531
crossref_primary_10_1016_j_jfranklin_2024_106996
crossref_primary_10_1016_j_matcom_2024_03_005
crossref_primary_10_1002_rnc_7000
crossref_primary_10_1016_j_neunet_2023_03_002
crossref_primary_10_1002_rnc_7508
crossref_primary_10_1109_TCSI_2024_3381334
crossref_primary_10_1109_TCYB_2024_3454053
crossref_primary_10_1109_TSMC_2022_3227607
crossref_primary_10_1002_rnc_7590
crossref_primary_10_1016_j_jfranklin_2023_11_016
crossref_primary_10_1016_j_jfranklin_2024_107152
crossref_primary_10_1007_s40815_022_01429_2
crossref_primary_10_1002_rnc_7479
crossref_primary_10_1002_rnc_7632
crossref_primary_10_1016_j_ijepes_2023_109278
crossref_primary_10_1109_TIV_2023_3317238
crossref_primary_10_1109_TSMC_2023_3344869
crossref_primary_10_1016_j_jfranklin_2024_107427
crossref_primary_10_1002_asjc_3351
crossref_primary_10_1016_j_isatra_2025_01_031
crossref_primary_10_1016_j_neucom_2021_12_087
crossref_primary_10_1016_j_amc_2023_128085
crossref_primary_10_1177_01423312211043666
crossref_primary_10_1002_mma_9767
crossref_primary_10_1007_s13042_024_02195_3
crossref_primary_10_1109_TFUZZ_2023_3308933
crossref_primary_10_1002_rnc_7148
crossref_primary_10_1002_rnc_7147
crossref_primary_10_1002_rnc_7781
crossref_primary_10_1016_j_jfranklin_2022_07_017
crossref_primary_10_1016_j_amc_2024_128653
crossref_primary_10_1016_j_jfranklin_2024_107415
crossref_primary_10_1002_rnc_7802
crossref_primary_10_1109_TIFS_2023_3347889
crossref_primary_10_1002_rnc_7647
crossref_primary_10_3934_era_2024291
crossref_primary_10_3934_mbe_2024196
crossref_primary_10_1016_j_jfranklin_2023_07_031
crossref_primary_10_1016_j_jfranklin_2024_106684
crossref_primary_10_1109_TNSE_2022_3177718
crossref_primary_10_3934_era_2024208
crossref_primary_10_3390_machines13030192
crossref_primary_10_1016_j_neunet_2024_107018
crossref_primary_10_1016_j_automatica_2023_111370
Cites_doi 10.1080/00207170110067116
10.1109/TNNLS.2016.2619345
10.1109/TCYB.2019.2921633
10.1007/s40815-018-0590-4
10.1109/TII.2018.2884494
10.1109/TNNLS.2017.2700321
10.1016/j.neucom.2017.10.009
10.1016/j.neucom.2019.01.099
10.1109/TCYB.2017.2729581
10.1016/j.jfranklin.2020.01.013
10.1109/TNNLS.2017.2728639
10.1109/TFUZZ.2018.2849702
10.1002/rnc.3120
10.1016/j.jfranklin.2019.01.045
10.1109/CDC.2000.914233
10.1109/TNNLS.2019.2896162
10.1109/TCYB.2019.2956137
10.1109/TCYB.2015.2487420
10.1002/oca.761
10.1016/j.neucom.2018.06.015
10.1016/j.nahs.2017.12.006
10.1109/TCST.2012.2196573
10.1016/j.ins.2018.04.055
10.1016/j.neucom.2019.03.058
10.1109/TNNLS.2019.2943548
10.1109/ACCESS.2018.2850156
10.1109/9.618250
10.1109/TAC.2003.811277
10.1109/TCYB.2019.2908187
10.1016/j.neucom.2015.09.058
10.1016/j.ins.2018.04.018
10.1109/TNNLS.2015.2425881
10.1109/TNNLS.2016.2636163
10.1109/TII.2018.2861904
10.1016/j.neucom.2019.04.063
10.1016/j.jfranklin.2015.01.026
10.1109/JAS.2019.1911651
10.1016/j.ins.2018.05.019
10.1109/TNNLS.2016.2580609
10.1109/TNNLS.2019.2963146
10.1109/TNNLS.2018.2873163
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2020.3030638
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 961
ExternalDocumentID 33108299
10_1109_TNNLS_2020_3030638
9241031
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: General Research Fund
  grantid: 17201219
  funderid: 10.13039/501100002920
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-e8e64f4b620d51a4aed30a281cae27c8cc059522374a4012c22a0d7b29a9d6543
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 16:21:17 EDT 2025
Sun Jun 29 16:02:41 EDT 2025
Wed Apr 16 06:19:26 EDT 2025
Thu Apr 24 23:09:35 EDT 2025
Tue Jul 01 00:27:36 EDT 2025
Wed Aug 27 02:49:29 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-e8e64f4b620d51a4aed30a281cae27c8cc059522374a4012c22a0d7b29a9d6543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7472-224X
0000-0002-0294-0640
0000-0003-0691-5386
PMID 33108299
PQID 2635054528
PQPubID 85436
PageCount 10
ParticipantIDs pubmed_primary_33108299
crossref_primary_10_1109_TNNLS_2020_3030638
proquest_miscellaneous_2455172372
ieee_primary_9241031
proquest_journals_2635054528
crossref_citationtrail_10_1109_TNNLS_2020_3030638
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref30
ref11
ref33
ref10
ref32
ref2
ref17
ref39
ref16
ref38
ref19
ref18
Zha (ref31) 2018; 457
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref7
Cochocki (ref1) 1993
ref9
ref4
ref3
ref6
Boukas (ref36) 2006
ref5
ref40
References_xml – ident: ref43
  doi: 10.1080/00207170110067116
– ident: ref4
  doi: 10.1109/TNNLS.2016.2619345
– ident: ref9
  doi: 10.1109/TCYB.2019.2921633
– ident: ref32
  doi: 10.1007/s40815-018-0590-4
– ident: ref20
  doi: 10.1109/TII.2018.2884494
– ident: ref21
  doi: 10.1109/TNNLS.2017.2700321
– volume-title: Neural Networks for Optimization and Signal Processing
  year: 1993
  ident: ref1
– ident: ref23
  doi: 10.1016/j.neucom.2017.10.009
– ident: ref24
  doi: 10.1016/j.neucom.2019.01.099
– ident: ref15
  doi: 10.1109/TCYB.2017.2729581
– ident: ref35
  doi: 10.1016/j.jfranklin.2020.01.013
– ident: ref12
  doi: 10.1109/TNNLS.2017.2728639
– ident: ref26
  doi: 10.1109/TFUZZ.2018.2849702
– ident: ref40
  doi: 10.1002/rnc.3120
– ident: ref29
  doi: 10.1016/j.jfranklin.2019.01.045
– ident: ref39
  doi: 10.1109/CDC.2000.914233
– ident: ref5
  doi: 10.1109/TNNLS.2019.2896162
– ident: ref25
  doi: 10.1109/TCYB.2019.2956137
– ident: ref8
  doi: 10.1109/TCYB.2015.2487420
– ident: ref41
  doi: 10.1002/oca.761
– ident: ref22
  doi: 10.1016/j.neucom.2018.06.015
– ident: ref14
  doi: 10.1016/j.nahs.2017.12.006
– ident: ref38
  doi: 10.1109/TCST.2012.2196573
– ident: ref17
  doi: 10.1016/j.ins.2018.04.055
– ident: ref28
  doi: 10.1016/j.neucom.2019.03.058
– ident: ref33
  doi: 10.1109/TNNLS.2019.2943548
– ident: ref3
  doi: 10.1109/ACCESS.2018.2850156
– ident: ref42
  doi: 10.1109/9.618250
– ident: ref37
  doi: 10.1109/TAC.2003.811277
– ident: ref7
  doi: 10.1109/TCYB.2019.2908187
– ident: ref19
  doi: 10.1016/j.neucom.2015.09.058
– volume: 457
  start-page: 141
  year: 2018
  ident: ref31
  article-title: Decentralized event-triggered $\mathcal{H}_\infty$ control for neural networks subject to cyber-attacks
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.04.018
– ident: ref10
  doi: 10.1109/TNNLS.2015.2425881
– ident: ref11
  doi: 10.1109/TNNLS.2016.2636163
– volume-title: Stochastic Switching Systems: Analysis and Design
  year: 2006
  ident: ref36
– ident: ref2
  doi: 10.1109/TII.2018.2861904
– ident: ref6
  doi: 10.1016/j.neucom.2019.04.063
– ident: ref13
  doi: 10.1016/j.jfranklin.2015.01.026
– ident: ref16
  doi: 10.1109/JAS.2019.1911651
– ident: ref27
  doi: 10.1016/j.ins.2018.05.019
– ident: ref18
  doi: 10.1109/TNNLS.2016.2580609
– ident: ref34
  doi: 10.1109/TNNLS.2019.2963146
– ident: ref30
  doi: 10.1109/TNNLS.2018.2873163
SSID ssj0000605649
Score 2.665999
Snippet The problem of event-triggered synchronization of master-slave neural networks is investigated in this article. It is assumed that both communication channels...
The problem of event-triggered synchronization of master–slave neural networks is investigated in this article. It is assumed that both communication channels...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 952
SubjectTerms Actuators
Channels
Communication
Communication channels
Computer crime
Data communication
Data transmission
Deception
Deception-attacks
event-triggered mechanisms
Feedback
Feedback control
Linear matrix inequalities
Manganese
Markov Chains
Markov processes
Mathematical analysis
Neural networks
Neural Networks, Computer
Output feedback
Stochasticity
Synchronism
Synchronization
Title Event-Triggered Output Feedback Synchronization of Master-Slave Neural Networks Under Deception Attacks
URI https://ieeexplore.ieee.org/document/9241031
https://www.ncbi.nlm.nih.gov/pubmed/33108299
https://www.proquest.com/docview/2635054528
https://www.proquest.com/docview/2455172372
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanrjQ0vLYUiojcQNvE9txkmMFXVWIXQ67lfYW-THpoVUW0QQJfj0zzgMJAeIWJWM71ozlb-yZ-Rh7Y1OAMqRaGK-sQP9LiwKBhXAIDZw1TrtAucPLlbm-0R-32XaPvZtyYQAgBp_BnB7jXX7Y-Y6Oyi7QVyBWgn22j45bn6s1nackiMtNRLsyNVJIlW_HHJmkvNisVp_W6A1KdFIJJSvi6VMIbQoZq77-2pIix8rf4WbcdhaHbDn-cB9tcjfvWjf3P36r5fi_Mzpijwf8yS97g3nC9qA5ZocjtwMflvoJu72iQEixQef9lug8-eeuRRG-wN3OWX_H198bHwvr9nmcfFfzpaWqC2J9b78Bp6ofONCqDzN_4JFgiX-AIYyGX7Ytpfc_ZTeLq837azGQMgivsrQVUIDRtXZGJiFLrbYQVGJlkXoLMveF9wjYENSpXFv03aSX0iYhd7K0ZaBE1mfsoNk18ILxXAXIQl17cNihzNAwEgs1vjCFUqaesXTUS-WHiuVEnHFfRc8lKauo1orUWg1qnbG3U5svfb2Of0qfkE4myUEdM3Y2qr8alvRDRVV7EmJkx1avp8-4GOmGxTaw61BGIwDNce5yxp73ZjP1PVrb6Z_HfMkeScqsiOFtZ-yg_drBK8Q7rTuPhv4ThLP6LQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALBQploYCRuIG3iZ3nsYKuFthdDruV9hbZzqSHVllEk0rl1zPjPJAQIG5RMnYSzVjzjT0zH8BbEyLmZRjJxGkjKf6KZEbAQlqCBtYkNrIl1w4vV8n8PPq8jbd78H6shUFEn3yGU770Z_nlzrW8VXZCsQKzEtyBu-T3Y9VVa407KgEh88TjXRUmSiqdbocqmSA_2axWizXFg4rCVMbJmpn6NIGbTPm-r7-ckmdZ-Tvg9I5ndgDL4ZO7fJPLadvYqfvxWzfH__2nh_CgR6DitDOZR7CH9WM4GNgdRL_YD-HijFMh5YbC9wsm9BRf24ZExIz8nTXuUqxva-db63aVnGJXiaXhvgtyfWVuUHDfD3rRqks0vxaeYkl8xD6RRpw2DRf4P4Hz2dnmw1z2tAzS6ThsJGaYRFVkExWUcWgig6UOjMpCZ1ClLnOOIBvBOp1GhqI35ZQyQZlalZu85FLWp7Bf72p8BiLVJcZlVTm0NKGKyTQCgxXdSDKtk2oC4aCXwvU9y5k646rwsUuQF16tBau16NU6gXfjmG9dx45_Sh-yTkbJXh0TOB7UX_SL-rrgvj0Bc7LTqDfjY1qOfMZiaty1JEOGSZhQp2oCR53ZjHMP1vb8z-98Dffmm-WiWHxafXkB9xXXWfhkt2PYb763-JLQT2NfeaP_CbjL_Xc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Event-Triggered+Output+Feedback+Synchronization+of+Master%E2%80%93Slave+Neural+Networks+Under+Deception+Attacks&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Kazemy%2C+Ali&rft.au=Lam%2C+James&rft.au=Zhang%2C+Xian-Ming&rft.date=2022-03-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=33&rft.issue=3&rft.spage=952&rft.epage=961&rft_id=info:doi/10.1109%2FTNNLS.2020.3030638&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2020_3030638
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon