Event-Triggered Output Feedback Synchronization of Master-Slave Neural Networks Under Deception Attacks
The problem of event-triggered synchronization of master-slave neural networks is investigated in this article. It is assumed that both communication channels from the sensor to controller and from controller to actuator are subject to stochastic deception attacks modeled by two independent Markov p...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 33; no. 3; pp. 952 - 961 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The problem of event-triggered synchronization of master-slave neural networks is investigated in this article. It is assumed that both communication channels from the sensor to controller and from controller to actuator are subject to stochastic deception attacks modeled by two independent Markov processes. Two discrete event-triggered mechanisms are introduced for both channels to reduce the number of data transmission through the communication channels. To comply with practical point of view, static output feedback is utilized. By employing the Lyapunov-Krasovskii functional method, some sufficient conditions on the synchronization of master-slave neural networks are derived in terms of linear matrix inequalities, which make it easy to design suitable output feedback controllers. Finally, a numerical example is presented to show the effectiveness of the proposed method. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2162-237X 2162-2388 2162-2388 |
DOI: | 10.1109/TNNLS.2020.3030638 |