Shape Tracking with Occlusions via Coarse-to-Fine Region-Based Sobolev Descent
We present a method to track the shape of an object from video. The method uses a joint shape and appearance model of the object, which is propagated to match shape and radiance in subsequent frames, determining object shape. Self-occlusions and dis-occlusions of the object from camera and object mo...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 37; no. 5; pp. 1053 - 1066 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.05.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present a method to track the shape of an object from video. The method uses a joint shape and appearance model of the object, which is propagated to match shape and radiance in subsequent frames, determining object shape. Self-occlusions and dis-occlusions of the object from camera and object motion pose difficulties to joint shape and appearance models in tracking. They are unable to adapt to new shape and appearance information, leading to inaccurate shape detection. In this work, we model self-occlusions and dis-occlusions in a joint shape and appearance tracking framework. Self-occlusions and the warp to propagate the model are coupled, thus we formulate a joint optimization problem. We derive a coarse-to-fine optimization method, advantageous in tracking, that initially perturbs the model by coarse perturbations before transitioning to finer-scale perturbations seamlessly. This coarse-to-fine behavior is automatically induced by gradient descent on a novel infinite-dimensional Riemannian manifold that we introduce. The manifold consists of planar parameterized regions, and the metric that we introduce is a novel Sobolev metric. Experiments on video exhibiting occlusions/dis-occlusions, complex radiance and background show that occlusion/dis-occlusion modeling leads to superior shape accuracy. |
---|---|
AbstractList | We present a method to track the shape of an object from video. The method uses a joint shape and appearance model of the object, which is propagated to match shape and radiance in subsequent frames, determining object shape. Self-occlusions and dis-occlusions of the object from camera and object motion pose difficulties to joint shape and appearance models in tracking. They are unable to adapt to new shape and appearance information, leading to inaccurate shape detection. In this work, we model self-occlusions and dis-occlusions in a joint shape and appearance tracking framework. Self-occlusions and the warp to propagate the model are coupled, thus we formulate a joint optimization problem. We derive a coarse-to-fine optimization method, advantageous in tracking, that initially perturbs the model by coarse perturbations before transitioning to finer-scale perturbations seamlessly. This coarse-to-fine behavior is automatically induced by gradient descent on a novel infinite-dimensional Riemannian manifold that we introduce. The manifold consists of planar parameterized regions, and the metric that we introduce is a novel Sobolev metric. Experiments on video exhibiting occlusions/dis-occlusions, complex radiance and background show that occlusion/dis-occlusion modeling leads to superior shape accuracy.We present a method to track the shape of an object from video. The method uses a joint shape and appearance model of the object, which is propagated to match shape and radiance in subsequent frames, determining object shape. Self-occlusions and dis-occlusions of the object from camera and object motion pose difficulties to joint shape and appearance models in tracking. They are unable to adapt to new shape and appearance information, leading to inaccurate shape detection. In this work, we model self-occlusions and dis-occlusions in a joint shape and appearance tracking framework. Self-occlusions and the warp to propagate the model are coupled, thus we formulate a joint optimization problem. We derive a coarse-to-fine optimization method, advantageous in tracking, that initially perturbs the model by coarse perturbations before transitioning to finer-scale perturbations seamlessly. This coarse-to-fine behavior is automatically induced by gradient descent on a novel infinite-dimensional Riemannian manifold that we introduce. The manifold consists of planar parameterized regions, and the metric that we introduce is a novel Sobolev metric. Experiments on video exhibiting occlusions/dis-occlusions, complex radiance and background show that occlusion/dis-occlusion modeling leads to superior shape accuracy. We present a method to track the shape of an object from video. The method uses a joint shape and appearance model of the object, which is propagated to match shape and radiance in subsequent frames, determining object shape. Self-occlusions and dis-occlusions of the object from camera and object motion pose difficulties to joint shape and appearance models in tracking. They are unable to adapt to new shape and appearance information, leading to inaccurate shape detection. In this work, we model self-occlusions and dis-occlusions in a joint shape and appearance tracking framework. Self-occlusions and the warp to propagate the model are coupled, thus we formulate a joint optimization problem. We derive a coarse-to-fine optimization method, advantageous in tracking, that initially perturbs the model by coarse perturbations before transitioning to finer-scale perturbations seamlessly. This coarse-to-fine behavior is automatically induced by gradient descent on a novel infinite-dimensional Riemannian manifold that we introduce. The manifold consists of planar parameterized regions , and the metric that we introduce is a novel Sobolev metric. Experiments on video exhibiting occlusions/dis-occlusions, complex radiance and background show that occlusion/dis-occlusion modeling leads to superior shape accuracy. |
Author | Yanchao Yang Sundaramoorthi, Ganesh |
Author_xml | – sequence: 1 surname: Yanchao Yang fullname: Yanchao Yang email: yanchao.yang@kaust.edu.sa organization: Dept. of Electr. Eng., King Abdullah Univ. of Sci. & Technol., Thuwal, Saudi Arabia – sequence: 2 givenname: Ganesh surname: Sundaramoorthi fullname: Sundaramoorthi, Ganesh email: ganesh.sundaramoorthi@kaust.edu.sa organization: Dept. of Appl. Math. & Comput. Sci., King Abdullah Univ. of Sci. & Technol., Thuwal, Saudi Arabia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26353328$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1P4zAURS0EgvLxB0BCkWbDJh0_Ozb2EjrAIDEwGsracpIXMKRxsZMi_j1mWliwYOWFz7WP7t0m653vkJB9oGMAqn9O_578uRwzCsWYcUm5omtkxEDSXDPN1smIgmS5Ukxtke0YH2kiBeWbZItJLjhnakSubx_sHLNpsNWT6-6zF9c_ZDdV1Q7R-S5mC2ezibchYt77_Nx1mP3D-3SVn9qIdXbrS9_iIvuFscKu3yUbjW0j7q3OHXJ3fjad_M6vbi4uJydXecUF9DkKDUw3GkRTY0EbrpRtwCb1orZY8tLySjBeI9WypLqQyRsbjqBL4Cyp75Cj5bvz4J8HjL2ZuSTQtrZDP0QDxwCCC1qIhP74gj76IXTJzoDUmkqVikjU4YoayhnWZh7czIZX89FUAtgSqIKPMWDziQA173OY_3OY9znMao4UUl9Clettn-rrg3Xt99GDZdQh4udfUgNlWvI39WaVMQ |
CODEN | ITPIDJ |
CitedBy_id | crossref_primary_10_1007_s11042_018_6057_7 crossref_primary_10_1137_19M1304210 crossref_primary_10_1016_j_neucom_2016_06_025 crossref_primary_10_1109_ACCESS_2017_2763963 crossref_primary_10_1137_20M1381927 crossref_primary_10_1007_s00138_022_01348_0 crossref_primary_10_1007_s11263_023_01881_z crossref_primary_10_1049_iet_cvi_2018_5717 crossref_primary_10_1109_ACCESS_2017_2673400 crossref_primary_10_1016_j_cmpb_2017_06_017 |
Cites_doi | 10.1007/s11263-007-0097-1 10.4171/jems/37 10.1109/TPAMI.2006.171 10.1006/cviu.1995.1004 10.4171/IFB/196 10.1073/pnas.93.4.1591 10.1023/A:1007979827043 10.1016/0004-3702(81)90024-2 10.1109/CVPR.2010.5539818 10.1109/CVPR.2009.5206604 10.1109/TPAMI.2008.28 10.1109/TPAMI.2011.257 10.1007/s10851-005-3624-0 10.1023/A:1008001603737 10.1016/0021-9991(88)90002-2 10.1023/A:1008078328650 10.1109/ICCV.2007.4408996 10.1007/s11263-010-0390-2 10.1109/83.536892 10.1109/34.841758 10.1137/040615286 10.2307/1970699 10.1109/TPAMI.2007.70751 10.1007/s11263-010-0416-9 10.1145/1531326.1531376 10.1109/ICCV.2011.6126502 10.1109/ICCV.2013.32 10.1109/TPAMI.2007.1081 10.1109/CVPR.2011.5995364 10.1109/34.722606 10.1007/BF00133570 10.1109/TPAMI.2006.161 10.1016/j.acha.2006.07.004 10.1137/090781139 10.1214/aoms/1177704472 10.1023/B:VISI.0000043755.93987.aa 10.1023/A:1007939232436 10.1109/83.902291 10.1006/cviu.1996.0006 10.1109/ICCV.1995.466855 10.1007/s11263-006-0635-2 10.1109/CVPR.2012.6247877 10.1002/cpa.3160420503 10.1006/jvci.2001.0475 10.1109/TPAMI.2004.1262333 10.1007/s11263-006-9966-2 10.1007/s11263-011-0490-7 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2015 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2015 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TPAMI.2014.2360380 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Technology Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 2160-9292 1939-3539 |
EndPage | 1066 |
ExternalDocumentID | 3759032171 26353328 10_1109_TPAMI_2014_2360380 6910296 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: KAUST funderid: 10.13039/501100004052 – fundername: Visual Computing Center funding |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AGSQL AHBIQ AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION RIG 5VS 9M8 ABFSI ADRHT AETEA AETIX AI. AIBXA AKJIK ALLEH FA8 H~9 IBMZZ ICLAB IFJZH NPM RNI RZB VH1 XJT 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c351t-e59129f915fde40f388af1a1604daeb3ba3c523de096b0946450ef3e19b132533 |
IEDL.DBID | RIE |
ISSN | 0162-8828 1939-3539 |
IngestDate | Fri Jul 11 03:11:10 EDT 2025 Mon Jun 30 06:41:29 EDT 2025 Mon Jul 21 05:51:17 EDT 2025 Thu Apr 24 23:01:25 EDT 2025 Tue Jul 01 05:06:21 EDT 2025 Wed Aug 27 02:47:50 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Object segmentation from video object tracking shape metrics optical flow deformable templates occlusions |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-e59129f915fde40f388af1a1604daeb3ba3c523de096b0946450ef3e19b132533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26353328 |
PQID | 1699068328 |
PQPubID | 85458 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_TPAMI_2014_2360380 proquest_miscellaneous_1711535045 crossref_citationtrail_10_1109_TPAMI_2014_2360380 pubmed_primary_26353328 ieee_primary_6910296 proquest_journals_1699068328 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-May-1 2015-5-1 2015-May 20150501 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-May-1 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
PublicationYear | 2015 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref52 ref55 ref11 ref54 ref10 yezzi (ref40) 0; 1 michor (ref39) 2003; 8 ref17 ref16 ref19 ref18 bai (ref25) 0 ref51 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 lucas (ref53) 0 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref35 ref34 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref38 evans (ref50) 1998; 2 bai (ref20) 2009; 28 xiao (ref29) 0 michor (ref37) 2008; 9 ref24 ref23 ref22 ref21 ref27 strecha (ref28) 0 alvarez (ref26) 0 |
References_xml | – start-page: 71 year: 0 ident: ref28 article-title: A probabilistic approach to large displacement optical flow and occlusion detection publication-title: Proc Wrokshop Statist Methods Video Process – ident: ref9 doi: 10.1007/s11263-007-0097-1 – volume: 8 start-page: 1 year: 2003 ident: ref39 article-title: Riemannian geometries on spaces of plane curves publication-title: J Eur Math Soc doi: 10.4171/jems/37 – ident: ref43 doi: 10.1109/TPAMI.2006.171 – ident: ref22 doi: 10.1006/cviu.1995.1004 – ident: ref51 doi: 10.4171/IFB/196 – ident: ref55 doi: 10.1073/pnas.93.4.1591 – ident: ref14 doi: 10.1023/A:1007979827043 – ident: ref48 doi: 10.1016/0004-3702(81)90024-2 – ident: ref3 doi: 10.1109/CVPR.2010.5539818 – start-page: 721 year: 0 ident: ref26 article-title: Symmetrical dense optical flow estimation with occlusions detection publication-title: Proc 7th Eur Conf Comput Vis – start-page: 674 year: 0 ident: ref53 article-title: An iterative image registration technique with an application to stereo vision publication-title: Proc 7th Int Joint Conf Artif Intell – ident: ref19 doi: 10.1109/CVPR.2009.5206604 – ident: ref21 doi: 10.1109/TPAMI.2008.28 – ident: ref4 doi: 10.1109/TPAMI.2011.257 – ident: ref42 doi: 10.1007/s10851-005-3624-0 – ident: ref45 doi: 10.1023/A:1008001603737 – ident: ref52 doi: 10.1016/0021-9991(88)90002-2 – ident: ref5 doi: 10.1023/A:1008078328650 – ident: ref27 doi: 10.1109/ICCV.2007.4408996 – ident: ref54 doi: 10.1007/s11263-010-0390-2 – ident: ref44 doi: 10.1109/83.536892 – ident: ref32 doi: 10.1109/34.841758 – ident: ref18 doi: 10.1137/040615286 – ident: ref7 doi: 10.2307/1970699 – ident: ref35 doi: 10.1109/TPAMI.2007.70751 – ident: ref46 doi: 10.1007/s11263-010-0416-9 – volume: 28 start-page: 70 year: 2009 ident: ref20 article-title: Video SnapCut: Robust video object cutout using localized classifiers publication-title: ACM Trans Graph doi: 10.1145/1531326.1531376 – ident: ref11 doi: 10.1109/ICCV.2011.6126502 – ident: ref10 doi: 10.1109/ICCV.2013.32 – ident: ref1 doi: 10.1109/TPAMI.2007.1081 – ident: ref30 doi: 10.1109/CVPR.2011.5995364 – ident: ref24 doi: 10.1109/34.722606 – volume: 9 start-page: 25 year: 2008 ident: ref37 article-title: A metric on shape space with explicit geodesics publication-title: Rendiconti Lincei - Matematica e Applicazioni – ident: ref12 doi: 10.1007/BF00133570 – ident: ref2 doi: 10.1109/TPAMI.2006.161 – ident: ref38 doi: 10.1016/j.acha.2006.07.004 – ident: ref6 doi: 10.1137/090781139 – ident: ref49 doi: 10.1214/aoms/1177704472 – ident: ref41 doi: 10.1023/B:VISI.0000043755.93987.aa – ident: ref23 doi: 10.1023/A:1007939232436 – start-page: 617 year: 0 ident: ref25 article-title: Dynamic color flow: A motion-adaptive color model for object segmentation in video publication-title: Proc 11th Eur Conf Comput Vis – ident: ref17 doi: 10.1109/83.902291 – start-page: 211 year: 0 ident: ref29 article-title: Bilateral filtering-based optical flow estimation with occlusion detection publication-title: Proc 9th Eur Conf Comput Vis – ident: ref47 doi: 10.1006/cviu.1996.0006 – ident: ref15 doi: 10.1109/ICCV.1995.466855 – ident: ref33 doi: 10.1007/s11263-006-0635-2 – ident: ref31 doi: 10.1109/CVPR.2012.6247877 – ident: ref13 doi: 10.1002/cpa.3160420503 – ident: ref16 doi: 10.1006/jvci.2001.0475 – volume: 2 year: 1998 ident: ref50 article-title: Partial differential equations. graduate studies in mathematics publication-title: Amer Math Soc – ident: ref36 doi: 10.1109/TPAMI.2004.1262333 – ident: ref34 doi: 10.1007/s11263-006-9966-2 – volume: 1 start-page: 913 year: 0 ident: ref40 article-title: Conformal metrics and true publication-title: Proc IEEE 10th Int Conf Comput Vis – ident: ref8 doi: 10.1007/s11263-011-0490-7 |
SSID | ssj0014503 |
Score | 2.294935 |
Snippet | We present a method to track the shape of an object from video. The method uses a joint shape and appearance model of the object, which is propagated to match... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1053 |
SubjectTerms | deformable templates Joints Manifolds Object segmentation from video object tracking occlusions optical flow Optical imaging Optimization Shape shape metrics Tracking |
Title | Shape Tracking with Occlusions via Coarse-to-Fine Region-Based Sobolev Descent |
URI | https://ieeexplore.ieee.org/document/6910296 https://www.ncbi.nlm.nih.gov/pubmed/26353328 https://www.proquest.com/docview/1699068328 https://www.proquest.com/docview/1711535045 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp_ZQCrQlLSBX4kazxHFs4iOPrmilBVRA4hY58VitWG1QSTjw6xk7D6GqrbhFih9JZpyZb54Au6kjtTs3Ik5N5t2MmYqNdYRapRY8tVq6UJ1_dqZOr7PvN_JmCb6MuTCIGILPcOIvgy_f1lXrTWX7imRbqtUyLBNw63K1Ro9BJkMXZNJg6IQTjBgSZBK9f3VxOPvmo7iySSpUInLf_s0XYRHCN2F_Jo9Cg5V_65pB5kxXYTY8bRdqcjtpm3JSPf5RyPGlr_MW3vTKJzvsuGUNlnCxDqtDYwfWn_N1eP2sSuEGnF3-NHfISKpV3q7OvOmWnVfVvPWWtnv28Muw45oAMsZNHU9pIvuBPsw5PiIRadllXdZzfGAnXeWod3A9_Xp1fBr3bRjiSkjexCg1KQVOc-ksZokTeW4cN1wlmTWExUsjKoKzFgkNlYQWFZECnUCuS4K69JHfw8qiXuAmMCO5scpwnft8XJtpQ8ulDsuDFC1tEAEfiFFUfY1y3ypjXgSskugi0LLwtCx6WkawN8656yp0_Hf0hifEOLKnQQRbA82L_hDfF1yRqFb0y8sj-DzepuPnfSpmgXVLYw5IpRaSFOMIPnS8Mq49sNjHv-_5CV7Rk8kuenILVprfLW6ThtOUO4G1nwDE6vGd |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB5V5QAcKLT8BAoYCU4o29iO3fjAobSsdml3QXQr9RaceCIQq03V3RTBs_AqvBvj_KlCwK0St0ixncSezHyfZzwD8FwUBLsTK0NhY-9mjHVoXUGsVRnJhTOqqLPzT6Z6dBK_PVWna_CjPwuDiHXwGQ78Ze3Ld2Ve-a2yHU22TRjdhlAe4revRNCWr8YHtJovhBi-me2PwraGQJhLxVchKkMWrTBcFQ7jqJBJYgtuuY5iZ4lIZlbmxMUcEpTPiOroWEVYSOQmI56m_HYnKfhrhDOUaE6H9T4KaimbzOGkU4i4dEdyIrMze783Gfu4sXggpI5k4gvO-bQvUvqy75csYF3S5e_otrZyww342c1PE9zyZVCtskH-_bfUkf_rBN6GWy28ZnvN_3AH1nCxCRtd6QrWarJNuHkpD-MWTI8_2TNkZLdz7zlgfnOavcvzeeX3Epfs4rNl-6U9X2K4KsMhdWQf0Adyh68JBDh2XGblHC_YQZMb6y6cXMk33oP1RbnAB8Cs4tZpy03iTxy72FgaThSY7Qp09IAAeLf4ad5mYffFQOZpzcYik9ayk3rZSVvZCeBl3-esyUHyz9ZbfuH7lu2aB7DdyVjaqqllyjWBEU1KPQngWX-bFIz3GtkFlhW12SXSIBVB_wDuN7LZj92J9MM_P_MpXB_NJkfp0Xh6-Ahu0FuqJlZ0G9ZX5xU-Jjy3yp7UvxWDj1cthr8ApGNOGg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shape+Tracking+with+Occlusions+via+Coarse-to-Fine+Region-Based+Sobolev+Descent&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Yang%2C+Yanchao&rft.au=Sundaramoorthi%2C+Ganesh&rft.date=2015-05-01&rft.eissn=1939-3539&rft.volume=37&rft.issue=5&rft.spage=1053&rft_id=info:doi/10.1109%2FTPAMI.2014.2360380&rft_id=info%3Apmid%2F26353328&rft.externalDocID=26353328 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |