Shape Tracking with Occlusions via Coarse-to-Fine Region-Based Sobolev Descent

We present a method to track the shape of an object from video. The method uses a joint shape and appearance model of the object, which is propagated to match shape and radiance in subsequent frames, determining object shape. Self-occlusions and dis-occlusions of the object from camera and object mo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 37; no. 5; pp. 1053 - 1066
Main Authors Yanchao Yang, Sundaramoorthi, Ganesh
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present a method to track the shape of an object from video. The method uses a joint shape and appearance model of the object, which is propagated to match shape and radiance in subsequent frames, determining object shape. Self-occlusions and dis-occlusions of the object from camera and object motion pose difficulties to joint shape and appearance models in tracking. They are unable to adapt to new shape and appearance information, leading to inaccurate shape detection. In this work, we model self-occlusions and dis-occlusions in a joint shape and appearance tracking framework. Self-occlusions and the warp to propagate the model are coupled, thus we formulate a joint optimization problem. We derive a coarse-to-fine optimization method, advantageous in tracking, that initially perturbs the model by coarse perturbations before transitioning to finer-scale perturbations seamlessly. This coarse-to-fine behavior is automatically induced by gradient descent on a novel infinite-dimensional Riemannian manifold that we introduce. The manifold consists of planar parameterized regions, and the metric that we introduce is a novel Sobolev metric. Experiments on video exhibiting occlusions/dis-occlusions, complex radiance and background show that occlusion/dis-occlusion modeling leads to superior shape accuracy.
AbstractList We present a method to track the shape of an object from video. The method uses a joint shape and appearance model of the object, which is propagated to match shape and radiance in subsequent frames, determining object shape. Self-occlusions and dis-occlusions of the object from camera and object motion pose difficulties to joint shape and appearance models in tracking. They are unable to adapt to new shape and appearance information, leading to inaccurate shape detection. In this work, we model self-occlusions and dis-occlusions in a joint shape and appearance tracking framework. Self-occlusions and the warp to propagate the model are coupled, thus we formulate a joint optimization problem. We derive a coarse-to-fine optimization method, advantageous in tracking, that initially perturbs the model by coarse perturbations before transitioning to finer-scale perturbations seamlessly. This coarse-to-fine behavior is automatically induced by gradient descent on a novel infinite-dimensional Riemannian manifold that we introduce. The manifold consists of planar parameterized regions, and the metric that we introduce is a novel Sobolev metric. Experiments on video exhibiting occlusions/dis-occlusions, complex radiance and background show that occlusion/dis-occlusion modeling leads to superior shape accuracy.We present a method to track the shape of an object from video. The method uses a joint shape and appearance model of the object, which is propagated to match shape and radiance in subsequent frames, determining object shape. Self-occlusions and dis-occlusions of the object from camera and object motion pose difficulties to joint shape and appearance models in tracking. They are unable to adapt to new shape and appearance information, leading to inaccurate shape detection. In this work, we model self-occlusions and dis-occlusions in a joint shape and appearance tracking framework. Self-occlusions and the warp to propagate the model are coupled, thus we formulate a joint optimization problem. We derive a coarse-to-fine optimization method, advantageous in tracking, that initially perturbs the model by coarse perturbations before transitioning to finer-scale perturbations seamlessly. This coarse-to-fine behavior is automatically induced by gradient descent on a novel infinite-dimensional Riemannian manifold that we introduce. The manifold consists of planar parameterized regions, and the metric that we introduce is a novel Sobolev metric. Experiments on video exhibiting occlusions/dis-occlusions, complex radiance and background show that occlusion/dis-occlusion modeling leads to superior shape accuracy.
We present a method to track the shape of an object from video. The method uses a joint shape and appearance model of the object, which is propagated to match shape and radiance in subsequent frames, determining object shape. Self-occlusions and dis-occlusions of the object from camera and object motion pose difficulties to joint shape and appearance models in tracking. They are unable to adapt to new shape and appearance information, leading to inaccurate shape detection. In this work, we model self-occlusions and dis-occlusions in a joint shape and appearance tracking framework. Self-occlusions and the warp to propagate the model are coupled, thus we formulate a joint optimization problem. We derive a coarse-to-fine optimization method, advantageous in tracking, that initially perturbs the model by coarse perturbations before transitioning to finer-scale perturbations seamlessly. This coarse-to-fine behavior is automatically induced by gradient descent on a novel infinite-dimensional Riemannian manifold that we introduce. The manifold consists of planar parameterized regions , and the metric that we introduce is a novel Sobolev metric. Experiments on video exhibiting occlusions/dis-occlusions, complex radiance and background show that occlusion/dis-occlusion modeling leads to superior shape accuracy.
Author Yanchao Yang
Sundaramoorthi, Ganesh
Author_xml – sequence: 1
  surname: Yanchao Yang
  fullname: Yanchao Yang
  email: yanchao.yang@kaust.edu.sa
  organization: Dept. of Electr. Eng., King Abdullah Univ. of Sci. & Technol., Thuwal, Saudi Arabia
– sequence: 2
  givenname: Ganesh
  surname: Sundaramoorthi
  fullname: Sundaramoorthi, Ganesh
  email: ganesh.sundaramoorthi@kaust.edu.sa
  organization: Dept. of Appl. Math. & Comput. Sci., King Abdullah Univ. of Sci. & Technol., Thuwal, Saudi Arabia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26353328$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1P4zAURS0EgvLxB0BCkWbDJh0_Ozb2EjrAIDEwGsracpIXMKRxsZMi_j1mWliwYOWFz7WP7t0m653vkJB9oGMAqn9O_578uRwzCsWYcUm5omtkxEDSXDPN1smIgmS5Ukxtke0YH2kiBeWbZItJLjhnakSubx_sHLNpsNWT6-6zF9c_ZDdV1Q7R-S5mC2ezibchYt77_Nx1mP3D-3SVn9qIdXbrS9_iIvuFscKu3yUbjW0j7q3OHXJ3fjad_M6vbi4uJydXecUF9DkKDUw3GkRTY0EbrpRtwCb1orZY8tLySjBeI9WypLqQyRsbjqBL4Cyp75Cj5bvz4J8HjL2ZuSTQtrZDP0QDxwCCC1qIhP74gj76IXTJzoDUmkqVikjU4YoayhnWZh7czIZX89FUAtgSqIKPMWDziQA173OY_3OY9znMao4UUl9Clettn-rrg3Xt99GDZdQh4udfUgNlWvI39WaVMQ
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1007_s11042_018_6057_7
crossref_primary_10_1137_19M1304210
crossref_primary_10_1016_j_neucom_2016_06_025
crossref_primary_10_1109_ACCESS_2017_2763963
crossref_primary_10_1137_20M1381927
crossref_primary_10_1007_s00138_022_01348_0
crossref_primary_10_1007_s11263_023_01881_z
crossref_primary_10_1049_iet_cvi_2018_5717
crossref_primary_10_1109_ACCESS_2017_2673400
crossref_primary_10_1016_j_cmpb_2017_06_017
Cites_doi 10.1007/s11263-007-0097-1
10.4171/jems/37
10.1109/TPAMI.2006.171
10.1006/cviu.1995.1004
10.4171/IFB/196
10.1073/pnas.93.4.1591
10.1023/A:1007979827043
10.1016/0004-3702(81)90024-2
10.1109/CVPR.2010.5539818
10.1109/CVPR.2009.5206604
10.1109/TPAMI.2008.28
10.1109/TPAMI.2011.257
10.1007/s10851-005-3624-0
10.1023/A:1008001603737
10.1016/0021-9991(88)90002-2
10.1023/A:1008078328650
10.1109/ICCV.2007.4408996
10.1007/s11263-010-0390-2
10.1109/83.536892
10.1109/34.841758
10.1137/040615286
10.2307/1970699
10.1109/TPAMI.2007.70751
10.1007/s11263-010-0416-9
10.1145/1531326.1531376
10.1109/ICCV.2011.6126502
10.1109/ICCV.2013.32
10.1109/TPAMI.2007.1081
10.1109/CVPR.2011.5995364
10.1109/34.722606
10.1007/BF00133570
10.1109/TPAMI.2006.161
10.1016/j.acha.2006.07.004
10.1137/090781139
10.1214/aoms/1177704472
10.1023/B:VISI.0000043755.93987.aa
10.1023/A:1007939232436
10.1109/83.902291
10.1006/cviu.1996.0006
10.1109/ICCV.1995.466855
10.1007/s11263-006-0635-2
10.1109/CVPR.2012.6247877
10.1002/cpa.3160420503
10.1006/jvci.2001.0475
10.1109/TPAMI.2004.1262333
10.1007/s11263-006-9966-2
10.1007/s11263-011-0490-7
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2015
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2015
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2014.2360380
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Technology Research Database

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 1066
ExternalDocumentID 3759032171
26353328
10_1109_TPAMI_2014_2360380
6910296
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: KAUST
  funderid: 10.13039/501100004052
– fundername: Visual Computing Center funding
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AGSQL
AHBIQ
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
RIG
5VS
9M8
ABFSI
ADRHT
AETEA
AETIX
AI.
AIBXA
AKJIK
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RNI
RZB
VH1
XJT
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-e59129f915fde40f388af1a1604daeb3ba3c523de096b0946450ef3e19b132533
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Fri Jul 11 03:11:10 EDT 2025
Mon Jun 30 06:41:29 EDT 2025
Mon Jul 21 05:51:17 EDT 2025
Thu Apr 24 23:01:25 EDT 2025
Tue Jul 01 05:06:21 EDT 2025
Wed Aug 27 02:47:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Object segmentation from video
object tracking
shape metrics
optical flow
deformable templates
occlusions
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-e59129f915fde40f388af1a1604daeb3ba3c523de096b0946450ef3e19b132533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26353328
PQID 1699068328
PQPubID 85458
PageCount 14
ParticipantIDs crossref_primary_10_1109_TPAMI_2014_2360380
proquest_miscellaneous_1711535045
crossref_citationtrail_10_1109_TPAMI_2014_2360380
pubmed_primary_26353328
ieee_primary_6910296
proquest_journals_1699068328
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-May-1
2015-5-1
2015-May
20150501
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-May-1
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref52
ref55
ref11
ref54
ref10
yezzi (ref40) 0; 1
michor (ref39) 2003; 8
ref17
ref16
ref19
ref18
bai (ref25) 0
ref51
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
lucas (ref53) 0
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref35
ref34
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref38
evans (ref50) 1998; 2
bai (ref20) 2009; 28
xiao (ref29) 0
michor (ref37) 2008; 9
ref24
ref23
ref22
ref21
ref27
strecha (ref28) 0
alvarez (ref26) 0
References_xml – start-page: 71
  year: 0
  ident: ref28
  article-title: A probabilistic approach to large displacement optical flow and occlusion detection
  publication-title: Proc Wrokshop Statist Methods Video Process
– ident: ref9
  doi: 10.1007/s11263-007-0097-1
– volume: 8
  start-page: 1
  year: 2003
  ident: ref39
  article-title: Riemannian geometries on spaces of plane curves
  publication-title: J Eur Math Soc
  doi: 10.4171/jems/37
– ident: ref43
  doi: 10.1109/TPAMI.2006.171
– ident: ref22
  doi: 10.1006/cviu.1995.1004
– ident: ref51
  doi: 10.4171/IFB/196
– ident: ref55
  doi: 10.1073/pnas.93.4.1591
– ident: ref14
  doi: 10.1023/A:1007979827043
– ident: ref48
  doi: 10.1016/0004-3702(81)90024-2
– ident: ref3
  doi: 10.1109/CVPR.2010.5539818
– start-page: 721
  year: 0
  ident: ref26
  article-title: Symmetrical dense optical flow estimation with occlusions detection
  publication-title: Proc 7th Eur Conf Comput Vis
– start-page: 674
  year: 0
  ident: ref53
  article-title: An iterative image registration technique with an application to stereo vision
  publication-title: Proc 7th Int Joint Conf Artif Intell
– ident: ref19
  doi: 10.1109/CVPR.2009.5206604
– ident: ref21
  doi: 10.1109/TPAMI.2008.28
– ident: ref4
  doi: 10.1109/TPAMI.2011.257
– ident: ref42
  doi: 10.1007/s10851-005-3624-0
– ident: ref45
  doi: 10.1023/A:1008001603737
– ident: ref52
  doi: 10.1016/0021-9991(88)90002-2
– ident: ref5
  doi: 10.1023/A:1008078328650
– ident: ref27
  doi: 10.1109/ICCV.2007.4408996
– ident: ref54
  doi: 10.1007/s11263-010-0390-2
– ident: ref44
  doi: 10.1109/83.536892
– ident: ref32
  doi: 10.1109/34.841758
– ident: ref18
  doi: 10.1137/040615286
– ident: ref7
  doi: 10.2307/1970699
– ident: ref35
  doi: 10.1109/TPAMI.2007.70751
– ident: ref46
  doi: 10.1007/s11263-010-0416-9
– volume: 28
  start-page: 70
  year: 2009
  ident: ref20
  article-title: Video SnapCut: Robust video object cutout using localized classifiers
  publication-title: ACM Trans Graph
  doi: 10.1145/1531326.1531376
– ident: ref11
  doi: 10.1109/ICCV.2011.6126502
– ident: ref10
  doi: 10.1109/ICCV.2013.32
– ident: ref1
  doi: 10.1109/TPAMI.2007.1081
– ident: ref30
  doi: 10.1109/CVPR.2011.5995364
– ident: ref24
  doi: 10.1109/34.722606
– volume: 9
  start-page: 25
  year: 2008
  ident: ref37
  article-title: A metric on shape space with explicit geodesics
  publication-title: Rendiconti Lincei - Matematica e Applicazioni
– ident: ref12
  doi: 10.1007/BF00133570
– ident: ref2
  doi: 10.1109/TPAMI.2006.161
– ident: ref38
  doi: 10.1016/j.acha.2006.07.004
– ident: ref6
  doi: 10.1137/090781139
– ident: ref49
  doi: 10.1214/aoms/1177704472
– ident: ref41
  doi: 10.1023/B:VISI.0000043755.93987.aa
– ident: ref23
  doi: 10.1023/A:1007939232436
– start-page: 617
  year: 0
  ident: ref25
  article-title: Dynamic color flow: A motion-adaptive color model for object segmentation in video
  publication-title: Proc 11th Eur Conf Comput Vis
– ident: ref17
  doi: 10.1109/83.902291
– start-page: 211
  year: 0
  ident: ref29
  article-title: Bilateral filtering-based optical flow estimation with occlusion detection
  publication-title: Proc 9th Eur Conf Comput Vis
– ident: ref47
  doi: 10.1006/cviu.1996.0006
– ident: ref15
  doi: 10.1109/ICCV.1995.466855
– ident: ref33
  doi: 10.1007/s11263-006-0635-2
– ident: ref31
  doi: 10.1109/CVPR.2012.6247877
– ident: ref13
  doi: 10.1002/cpa.3160420503
– ident: ref16
  doi: 10.1006/jvci.2001.0475
– volume: 2
  year: 1998
  ident: ref50
  article-title: Partial differential equations. graduate studies in mathematics
  publication-title: Amer Math Soc
– ident: ref36
  doi: 10.1109/TPAMI.2004.1262333
– ident: ref34
  doi: 10.1007/s11263-006-9966-2
– volume: 1
  start-page: 913
  year: 0
  ident: ref40
  article-title: Conformal metrics and true
  publication-title: Proc IEEE 10th Int Conf Comput Vis
– ident: ref8
  doi: 10.1007/s11263-011-0490-7
SSID ssj0014503
Score 2.294935
Snippet We present a method to track the shape of an object from video. The method uses a joint shape and appearance model of the object, which is propagated to match...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1053
SubjectTerms deformable templates
Joints
Manifolds
Object segmentation from video
object tracking
occlusions
optical flow
Optical imaging
Optimization
Shape
shape metrics
Tracking
Title Shape Tracking with Occlusions via Coarse-to-Fine Region-Based Sobolev Descent
URI https://ieeexplore.ieee.org/document/6910296
https://www.ncbi.nlm.nih.gov/pubmed/26353328
https://www.proquest.com/docview/1699068328
https://www.proquest.com/docview/1711535045
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp_ZQCrQlLSBX4kazxHFs4iOPrmilBVRA4hY58VitWG1QSTjw6xk7D6GqrbhFih9JZpyZb54Au6kjtTs3Ik5N5t2MmYqNdYRapRY8tVq6UJ1_dqZOr7PvN_JmCb6MuTCIGILPcOIvgy_f1lXrTWX7imRbqtUyLBNw63K1Ro9BJkMXZNJg6IQTjBgSZBK9f3VxOPvmo7iySSpUInLf_s0XYRHCN2F_Jo9Cg5V_65pB5kxXYTY8bRdqcjtpm3JSPf5RyPGlr_MW3vTKJzvsuGUNlnCxDqtDYwfWn_N1eP2sSuEGnF3-NHfISKpV3q7OvOmWnVfVvPWWtnv28Muw45oAMsZNHU9pIvuBPsw5PiIRadllXdZzfGAnXeWod3A9_Xp1fBr3bRjiSkjexCg1KQVOc-ksZokTeW4cN1wlmTWExUsjKoKzFgkNlYQWFZECnUCuS4K69JHfw8qiXuAmMCO5scpwnft8XJtpQ8ulDsuDFC1tEAEfiFFUfY1y3ypjXgSskugi0LLwtCx6WkawN8656yp0_Hf0hifEOLKnQQRbA82L_hDfF1yRqFb0y8sj-DzepuPnfSpmgXVLYw5IpRaSFOMIPnS8Mq49sNjHv-_5CV7Rk8kuenILVprfLW6ThtOUO4G1nwDE6vGd
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB5V5QAcKLT8BAoYCU4o29iO3fjAobSsdml3QXQr9RaceCIQq03V3RTBs_AqvBvj_KlCwK0St0ixncSezHyfZzwD8FwUBLsTK0NhY-9mjHVoXUGsVRnJhTOqqLPzT6Z6dBK_PVWna_CjPwuDiHXwGQ78Ze3Ld2Ve-a2yHU22TRjdhlAe4revRNCWr8YHtJovhBi-me2PwraGQJhLxVchKkMWrTBcFQ7jqJBJYgtuuY5iZ4lIZlbmxMUcEpTPiOroWEVYSOQmI56m_HYnKfhrhDOUaE6H9T4KaimbzOGkU4i4dEdyIrMze783Gfu4sXggpI5k4gvO-bQvUvqy75csYF3S5e_otrZyww342c1PE9zyZVCtskH-_bfUkf_rBN6GWy28ZnvN_3AH1nCxCRtd6QrWarJNuHkpD-MWTI8_2TNkZLdz7zlgfnOavcvzeeX3Epfs4rNl-6U9X2K4KsMhdWQf0Adyh68JBDh2XGblHC_YQZMb6y6cXMk33oP1RbnAB8Cs4tZpy03iTxy72FgaThSY7Qp09IAAeLf4ad5mYffFQOZpzcYik9ayk3rZSVvZCeBl3-esyUHyz9ZbfuH7lu2aB7DdyVjaqqllyjWBEU1KPQngWX-bFIz3GtkFlhW12SXSIBVB_wDuN7LZj92J9MM_P_MpXB_NJkfp0Xh6-Ahu0FuqJlZ0G9ZX5xU-Jjy3yp7UvxWDj1cthr8ApGNOGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shape+Tracking+with+Occlusions+via+Coarse-to-Fine+Region-Based+Sobolev+Descent&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Yang%2C+Yanchao&rft.au=Sundaramoorthi%2C+Ganesh&rft.date=2015-05-01&rft.eissn=1939-3539&rft.volume=37&rft.issue=5&rft.spage=1053&rft_id=info:doi/10.1109%2FTPAMI.2014.2360380&rft_id=info%3Apmid%2F26353328&rft.externalDocID=26353328
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon