Shape Tracking with Occlusions via Coarse-to-Fine Region-Based Sobolev Descent

We present a method to track the shape of an object from video. The method uses a joint shape and appearance model of the object, which is propagated to match shape and radiance in subsequent frames, determining object shape. Self-occlusions and dis-occlusions of the object from camera and object mo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 37; no. 5; pp. 1053 - 1066
Main Authors Yanchao Yang, Sundaramoorthi, Ganesh
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present a method to track the shape of an object from video. The method uses a joint shape and appearance model of the object, which is propagated to match shape and radiance in subsequent frames, determining object shape. Self-occlusions and dis-occlusions of the object from camera and object motion pose difficulties to joint shape and appearance models in tracking. They are unable to adapt to new shape and appearance information, leading to inaccurate shape detection. In this work, we model self-occlusions and dis-occlusions in a joint shape and appearance tracking framework. Self-occlusions and the warp to propagate the model are coupled, thus we formulate a joint optimization problem. We derive a coarse-to-fine optimization method, advantageous in tracking, that initially perturbs the model by coarse perturbations before transitioning to finer-scale perturbations seamlessly. This coarse-to-fine behavior is automatically induced by gradient descent on a novel infinite-dimensional Riemannian manifold that we introduce. The manifold consists of planar parameterized regions, and the metric that we introduce is a novel Sobolev metric. Experiments on video exhibiting occlusions/dis-occlusions, complex radiance and background show that occlusion/dis-occlusion modeling leads to superior shape accuracy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0162-8828
1939-3539
2160-9292
1939-3539
DOI:10.1109/TPAMI.2014.2360380