Fault Detection of Urban Wastewater Treatment Process Based on Combination of Deep Information and Transformer Network

As one of the hot issues of concerns during modern social development, the wastewater treatment process is acknowledged to be a process with complex biochemical reactions and susceptible to an external environment, featuring strong nonlinear and time correlation characteristics, which are difficult...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 35; no. 6; pp. 8124 - 8133
Main Authors Peng, Chang, FanChao, Meng
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:As one of the hot issues of concerns during modern social development, the wastewater treatment process is acknowledged to be a process with complex biochemical reactions and susceptible to an external environment, featuring strong nonlinear and time correlation characteristics, which are difficult for traditional mechanism-based models to tackle. For many classical data-driven fault detection methods, a complete retraining process is necessary to monitor every new fault, and most of the current neural network-based strategies rarely achieve satisfactory monitoring accuracy or robustness either. Giving full consideration to the aforementioned problems, this article takes advantage of position encoding, residual connection, and multihead attention mechanism embedded in the Transformer structure to establish an effective and efficient wastewater treatment process fault detection model, where offline modeling and online monitoring are performed successively to achieve accurate detection of the faults. In the experimental part, the advantages of the proposed method are strongly verified through the simulation monitoring of 27 faults on the benchmark simulation model 1 (BSM1), where the false alarm rate (FAR) and miss alarm rate (MAR) of the established method are proved to be significantly lower than those of the compared state-of-the-art methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2022.3224804